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Abstract

Inferring the Elastic Structure of the Earth’s Mantle using the Spectral Element Method

by

Vedran Lekic

Doctor of Philosophy in Earth and Planetary Science

University of California at Berkeley

Professor Barbara Romanowicz, Chair

Mapping the elastic and anelastic structure of the Earth’s mantle is crucial for under-

standing the temperature, composition and dynamics of our planet. Extracting the infor-

mation contained in seismic waveforms is the key to constraining the elastic and anelas-

tic structure within the Earth, and is the goal of our work. In the past quarter century,

global tomography based on ray theory and first-order perturbation methods has imaged

long-wavelength velocity heterogeneities of the Earth’s mantle. However, the approximate

techniques upon which global tomographers have traditionally relied become inadequate

when dealing with crustal structure, as well as short-wavelength or large amplitude mantle

heterogeneity. The spectral element method, on the other hand, permits accurate calcula-

tion of wave propagation through highly heterogeneous structures, and is computationally

economical when coupled with a normal mode solution and applied to a restricted region

of the earth such as the upper mantle (SEM: Capdeville et al., 2003). Importantly, SEM
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allows a dramatic improvement in accounting for the effects of crustal structure.

Here, we develop and apply a new hybrid method of tomography, which allows us to

leverage the accuracy of SEM to model fundamental and high-mode long period (>60s)

waveforms. We then present the first global model of upper mantle velocity and radial

anisotropy developed using SEM. Our model, SEMum, confirms that the long-wavelength

mantle structure imaged using approximate semi-analytic techniques is robust and rep-

resentative of the Earth’s true structure. Furthermore, it reveals structures in the upper

mantle that were not clearly seen in previous global tomographic models, providing new

constraints on the temperature, composition as well as flow in the mantle. We show that

applying a clustering analysis to the absolute shear wave-speed profiles offers a powerful

new way of exploring the relationship between surface expressions of tectonics and their

elastic signature in the upper mantle. We note that this new hybrid approach to tomography

can be applied to a bigger and higher-frequency dataset in order to gain new insights into

the structure of the lower mantle and more robustly map seismic structure at the regional

and smaller scales.

Professor Barbara Romanowicz, Chair
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To my grandfather, for encouraging me to explore.
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Chapter 1

Introduction

Global networks of digital seismometers routinely record seismic waves that, once excited

by earthquakes, travel thousands of miles through the Earth. During their voyage, seismic

waves are affected by variations in elastic wavespeeds and by anisotropy, which causes

differently polarized waves to travel at different velocities. Variations of velocity provide

clues to the temperature and composition in the Earth’s interior, while anisotropy can be

used to infer flow within the mantle. Furthermore, the waves lose energy due to microscopic

(anelastic) dissipative processes operating at a variety of timescales. This energy loss is

thought to be strongly dependent on temperature, and is summarized by a quantity Q ∝

−1/∆E, which varies with frequency and position in the Earth.

Thus, precise observations of seismic waveforms contain information on the elastic and
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anelastic structure - and through them, the thermal and compositional state - of the Earth’s

interior. Extracting this information with the goal of imaging the Earth’s interior at local,

regional and global scales has been the focus of intense study since the beginnings of seis-

mology. This work builds upon the efforts on the global scale, and attempts to improve

the constraints of mantle elastic and anelastic structure of the Earth’s upper mantle. In its

course, we identify and seek to address a set of challenges that have stymied the develop-

ment of higher resolution images of the Earth’s interior.

We first turn our attention to resolving the heretofore poorly constrained frequency depen-

dence of attenuation. Despite strong indications from theoretical and laboratories studies

that Q increases with frequency, the difficulty of a robust measurement of this frequency

dependence in the Earth has compelled seismologists to routinely assume that Q is indepen-

dent of frequency. Yet, constraining the frequency dependence of intrinsic seismic attenu-

ation is crucial for: 1. correcting for velocity dispersion due to attenuation; 2. construct-

ing attenuation and velocity models of the interior using datasets with different frequency

contents; and, 3. interpreting lateral variations of velocity and attenuation in terms of tem-

perature and composition. Frequency dependence of attenuation q can be represented by

a power law q ∝ q−α

0 . Despite its importance, efforts at determining α from surface wave

and free oscillation data have been thwarted by the strong tradeoffs between the depth- and

frequency dependence of attenuation.

In Chapter 2, we develop and validate a new method that eliminates this tradeoff, allow-
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ing a direct estimation of effective frequency dependence of attenuation without having to

construct a new depth-dependent model of attenuation. Using normal mode and surface

wave attenuation measurements between 80 and 3000 s, we find that α varies with fre-

quency within the absorption band. It is 0.3 at periods shorter than 200 s, it decreases to

0.1 between 300 and 800 s, and becomes negative at periods longer than 1000 s. We then

discuss the implications that this observation holds for the construction of 1D profiles of

attenuation and for performing velocity dispersion corrections.

In Chapters 3-5, we turn our attention to the elastic structure of the upper mantle.

Accurate accounting for the effects of crustal structure on long-period seismic surface

waves and overtones is difficult but indispensable for determining elastic structure in the

mantle. Standard linear crustal corrections have been shown to be inadequate on the global

scale, and newer non-linear techniques are computationally expensive when applied to

waveforms containing higher frequencies and/or overtones. In Chapter 3, we describe a

technique for significantly improving the accuracy of linear corrections without increasing

the computational cost. We validate the technique by using the Spectral Element Method

to carry out a series of synthetic tests that probe the consequences of using both standard

and our modified linear crustal corrections. We show that the use of standard linear correc-

tions can cause significant contamination of retrieved isotropic mantle velocities to 150 km

depth and anisotropic structure to 250 km. At depths shallower than 100 km, anisotropic

structure can be obliterated by purely crustal effects. The use of the modified linear cor-
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rections nearly eliminates the contamination of isotropic mantle structure, and significantly

reduces contamination of anisotropic structure. Finally, we apply the technique to a real

long period waveform dataset and demonstrate the benefit of improved crustal corrections

on the retrieved model.

Chapter 4 describes a novel hybrid approach to long-period waveform tomography, that

we have developed. In the past quarter century, global tomography based on ray theory

and first-order perturbation methods has imaged long-wavelength velocity heterogeneities

of the Earth’s mantle. While these models have contributed significantly to our under-

standing of mantle circulation, the development of higher resolution images of the Earth’s

interior holds tremendous promise for understanding the nature of the observed hetero-

geneities. This endeavor confronts us with two challenges. First, it requires extracting a far

greater amount of information from the available seismograms than is generally used. Sec-

ond, the approximate techniques upon which global tomographers have traditionally relied

become inadequate when dealing with short-wavelength heterogeneity. The spectral ele-

ment method, on the other hand, permits accurate calculation of wave propagation through

highly heterogeneous structures, and is computationally economical when coupled with a

normal mode solution and applied to a restricted region of the earth such as the upper man-

tle (cSEM: Capdeville et al., 2003). Importantly, cSEM allows a dramatic improvement in

accounting for the effects of crustal structure.

In order to meet these challenges, we have developed a novel approach in which forward-
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modeling is performed using the Coupled Spectral Element Method (CSEM: Capdeville

et al., 2003), which can accurately model seismic wave propagation in a 3D earth with both

short and long wavelength structure, while in the inversion step, the sensitivity kernels are

calculated using an approximate, non-linear normal mode summation approach (NACT: Li

and Romanowicz, 1995). Modeling is performed in an iterative fashion, and convergence is

achieved as long as the average sign of the sensitivity kernels is correct. Indeed, we verify

that the use of approximate kernels does not prevent our iterative procedure from converg-

ing. We start our iterative inversion procedure with a 1D model, so as to not bias our results

toward existing 3D upper mantle models. Our dataset consists of complete 3-component

time domain seismograms filtered at periods greater than 80 s for 100 earthquakes observed

at well over 100 stations of the IRIS/GSN, GEOSCOPE, GEOFON and various regional

broadband networks. In order to improve the resolution of shallow structure, we supple-

ment this waveform dataset with maps of group velocity dispersion in the 25-150s range,

provided by M. Ritzwoller.

In Chapter 5, we present the first global model of upper mantle velocity and radial anisotropy

developed by applying the SEM to modeling fundamental- and higher-mode waveforms.

Our model confirms the large- scale features observed by previous researchers. In partic-

ular, we retrieve the relatively shallow, seismically slow velocities beneath volcanic arcs

and mid-ocean ridges, the deeper fast roots underlying cratons, slow velocities in the cen-

tral Pacific below 250km depth, and enhanced fast velocities anomalies consistent with

slab locations in the transition zone. We discuss notable features of the model, comparing
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and contrasting them with global and regional models developed using less accurate tech-

niques. We then infer the thickness of the lithosphere across the globe, by associating the

lithosphere-asthenosphere boundary with the strongest negative gradients of velocity with

depth. Finally, we apply a clustering analysis to the profiles of absolute shear wavespeed in

order to explore the relationship between surface tectonics and upper mantle elastic struc-

ture. This approach allows us to distinguish oceanic and continental regions, as well as

make more nuanced distinctions, such as those between stable and tectonically active con-

tinents as well as to identify the world’s major cratons using only our tomographic model.

In Chapter 6, we summarize the implications enabled by the hybrid tomographic technique

developed in Chapter 4 and applied in Chapter 5 to the creation of a new upper mantle

anisotropic model. We identify a number of potential ways in which the results of our work

can be used to better constrain the temperature and composition of the mantle as well as

its flow field. Finally, we explain how our anisotropic upper mantle model can be used to

facilitate the development of a model of 3D variations of seismic attenuation in the upper

mantle. The development of such a model would provide complementary and independent

constraints on temperature within the mantle.
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Chapter 2

Measurement and Implications of

Frequency Dependence of Attenuation

2.1 Introduction

As they propagate through the Earth, seismic waves experience attenuation and disper-

sion resulting from microscopic dissipative processes operating at a variety of relaxation

times. These dissipative effects can be summarized by the macroscopic quantity q =

−∆E/2πEmax, where ∆E is the internal energy lost by a seismic wave in one cycle. This

quantity can be related to the often-used quality factor Q through q ≡ (1/Q). The Earth

acts as an absorption band (e.g. Anderson, 1976) and attenuation depends on the fre-
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quency of oscillation. Within the absorption band, attenuation is relatively high and does

not strongly depend on frequency. Outside the band, attenuation rapidly decreases with fre-

quency. Since the relaxation times of the dissipative processes giving rise to the absorption

band might strongly depend on pressure and temperature, the frequency bounds of the band

can change with depth (e.g. Anderson and Minster, 1979; Minster and Anderson, 1981; An-

derson and Given, 1982). Within the absorption band, the frequency dependence of q can

be described using a power law, q ∝ ωα , with a model-dependent α , usually thought to be

smaller than 0.5 (e.g. Anderson and Minster, 1979).

In the past few years, three new models of 3-D variations in upper mantle attenuation have

been developed (Selby and Woodhouse, 2002; Gung and Romanowicz, 2004; Dalton and

Ekström, 2006), offering the promise of clarifying the origin (thermal versus chemical) of

lateral heterogeneities. Yet, knowing the value of α within the absorption band is required

for interpreting lateral variations in attenuation in terms of temperature. It is also one of

the governing parameters for interpreting observed lateral variations in seismic velocities.

Matas & Bukowinski (2007) proposed a self-consistent attenuation model based on solid

state physics and showed that anelasticity can substantially enhance seismic anomalies due

to high temperature (by ∼ 30 %), thus confirming earlier observations of Romanowicz

(1994). It is important to note that interpreting attenuation in terms of temperature and pre-

dicting its effects on seismic anomalies is only reasonable if the contribution of scattering

is small compared to that due to intrinsic anelastic processes.
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A non-zero α implies that seismic waves of different frequencies are differently attenu-

ated, and accordingly modifies the velocity dispersion relation. This has three important

consequences: 1) Because oscillations at different frequencies can have very different depth

sensitivities to elastic and anelastic properties of the Earth, the value of α affects the con-

struction and interpretation of such profiles. In particular, the lower mantle q is mostly con-

strained by low-frequency modes and is thus not directly comparable to q obtained from

high-frequency modes, which sample the upper mantle. A single radial attenuation profile

is only relevant if α = 0; 2) Because the frequency content of different attenuation mea-

surements can differ, combining these datasets requires accounting for the effect of α . For

instance, if α = 0.3, then q varies by a factor of two in a dataset including periods between

50s and 5s; 3) Because geophysical datasets used to constrain Earth structure have very

different dominant frequencies, using them together requires applying a dispersion correc-

tion whose functional form is different for a non-zero α than it is under the assumption of

frequency independent attenuation (Minster and Anderson, 1981).

Efforts at determining α of the mantle have followed three approaches: theoretical studies,

laboratory experiments and seismological observations. Theoretical investigations have fo-

cused on explaining the origin of the absorption band and incorporating models of likely

relaxation mechanisms developed using solid state physics. Liu et al. (1976) and Kanamori

and Anderson (1977) modeled the absorption band for a standard linear solid as a su-

perposition of relaxation mechanisms, whose combined effects resulted in a frequency-

independent q within the absorption band. Minster and Anderson (1981) applied insights
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from solid state physics to suggest that, for dissipation dominated by dislocation creep,

α > 0 within the absorption band. Building on this work, Anderson and Given (1982)

developed an absorption band model of the Earth in which the effects of pressure and tem-

perature on the underlying relaxation mechanisms caused the frequency bounds of the band

to change with depth.

Despite observational and experimental advances, no clear consensus concerning the value

of mantle α has emerged over the past 25 years. Nevertheless, theoretical predictions of

α > 0 have been systematically confirmed in various laboratory studies. In their review

paper, Karato & Spetzler (1990) argued that its value lies between 0.2 and 0.4. A more

recent review by Romanowicz & Mitchell (2007) identifies a number of studies that col-

lectively constrain α to the 0.1-0.4 range. On the laboratory front, Jackson et al. (2005)

obtained α of 0.28±0.01 for a fine-grained olivine sample at a pressure of 300 MPa and

temperature of 1200 ◦C. Relating laboratory measurements to α in the real mantle, how-

ever, is not straightforward, due to uncertainties in extrapolating laboratory measurements

to actual mantle materials under high-pressure and high-temperature conditions prevailing

in the mantle.

On the other hand, seismological efforts at constraining globally-averaged α within the

absorption band have benefited from numerous measurements of surface wave or nor-

mal mode attenuation. Yet, although attenuation measurements of nearly 250 individ-

ual modes are currently available from the website of the Reference Earth Model project
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(http://mahi.ucsd.edu/Gabi/rem.html, see Fig. 1), the determination of α has been con-

founded by the fact that oscillations at different frequencies can have very different depth

sensitivities to elastic and anelastic properties of the earth. As a result of this tradeoff be-

tween frequency and depth effects, radial variations of attenuation can obscure the α signal.

The only studies attempting to obtain α within the absorption band have found α ranging

from 0.1 to 0.3 while emphasizing the lack of resolution on the inferred values (Anderson

and Minster, 1979; Anderson and Given, 1982; Smith and Dahlen, 1981). More recent

studies (e.g. Shito et al., 2004; Cheng and Kennett, 2002; Flanagan and Wiens, 1998) have

relied upon analysis of body waves to argue for values of α in the 0.1-0.4 range. How-

ever, these studies were restricted to frequencies higher than 40mHz and were of regional

character, leaving unanswered the question of the average mantle α .

A further complication in determining the frequency dependence of attenuation from seis-

mic data arises from the discrepancy between attenuation measurements of spheroidal

modes carried out using a propagating (surface) wave and those using a standing wave

(normal mode) approach. As can be seen in Fig. 1, surface wave studies indicate attenua-

tion values that are higher by about 15-20% than normal mode measurements of the same

frequency. This discrepancy is not present in the toroidal modes. The origin of the discrep-

ancy has not yet been determined. Whereas Durek & Ekström (1997) argued that noise can

bias normal mode measurements toward lower attenuation values by up to 5-10%, Masters

& Laske (1997) pointed to difficulties in choosing an appropriate time window for long-

period surface waves as a reason for favoring normal mode measurements. A more recent
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study by Roult & Clévédé (2000) based on a detailed analysis of measurement techniques

and associated errors argues that the normal mode measurements are the more reliable.

Yet, their analysis is far from being complete (Romanowicz and Mitchell, 2007), and the

question of which set of measurements is more representative of the Earth’s attenuation

remains open. The compilation of attenuation measurements used in this study (Masters,

personal communication) relies on careful windowing and a multi-taper approach in order

to achieve a smooth transition from the normal mode values at lower frequencies to surface

wave values at higher frequencies (see Fig. 1).

In light of the data uncertainties and the strong tradeoff between the depth and frequency de-

pendence of attenuation, seismic studies routinely focus on modeling the depth-dependence

of attenuation (e.g Anderson and Hart, 1978; Dziewonski and Anderson, 1981; Masters and

Gilbert, 1983; Widmer et al., 1991; Durek and Ekström, 1996). In other words, they as-

sume that, within the seismic band, α cannot be resolved and thus implicitly rely on the

frequency-independent attenuation model of Kanamori & Anderson (1977). Anderson and

Given (1982) created the only model of both the frequency and depth dependence of attenu-

ation by relating them through a physical model of the underlying relaxation mechanisms.

The exact nature of mantle relaxation processes is, however, still debated (e.g. Jackson

and Anderson, 1970; Karato and Spetzler, 1990). In this paper, we develop and apply a

new method based on the standard analysis of Backus & Gilbert (1970) that allows us to

separate the effects of the radial q profile from those due to frequency dependence of q

as described by α . Therefore, we are able to eliminate the tradeoffs present in previous
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studies and to focus on determining α without having to construct a new radial q profile or

a full absorption band model of attenuation in the mantle. Our method also makes it possi-

ble to move beyond the assumption of frequency-independent attenuation without relying

on model-dependent physical constraints, as Anderson and Given, 1982 had done. In what

follows, we carry out a suite of synthetic tests which explore the characteristics of the avail-

able attenuation measurements. We also attempt to extract α from available long-period

seismic attenuation data.

2.2 Method

We here modify the standard analysis of the resolution provided by a set of measurements

(Backus and Gilbert, 1970), which has been recently applied to the study of radial density

resolution within the Earth (Masters and Gubbins, 2003). Our goal is to adapt this analysis

in order to extract the signal of frequency dependence of seismic attenuation.

We can relate a mode attenuation measurement q to material properties within the Earth via

sensitivity (Fréchet) kernels Kµ and Kκ (e.g. Dahlen and Tromp, 1998):

q =
∫ R

0
dr
(
κ0qκKκ + µ0qµKµ

)
, (2.1)

where R is the radius of the Earth, κ0 and µ0 are the reference radial profiles of bulk and
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shear moduli, and qκ and qµ are values of radial bulk and shear attenuation. In this study

we use either PREM (Dziewonski and Anderson, 1981) or ak135 (Kennett et al., 1995)

as the elastic, and QL6 (Durek and Ekström, 1996) or QM1 (Widmer et al., 1991) as the

attenuation reference profiles . We calculate the relevant frequencies of oscillation and sen-

sitivity kernels Kµ and Kκ using a modified MINOS (Woodhouse, 1998) code (Capdeville,

personal communication). The results of our analysis are valid insofar as the deviations of

q from the reference profile remain sufficiently small to not affect the kernels themselves.

All the quantities in the integrand of Eq. (2.1) are functions of radius. We proceed to

discretize them with respect to radius, so that they can be written in vector form, e.g.

Kµ(r) becomes Kµ . For the frequency range considered in this study, we verify that the

discretization is sufficiently dense.

It is important to observe that the sensitivity kernels of fundamental modes with similar

frequencies are very similar. Therefore, existing q datasets are likely to be highly redundant

(Masters and Gilbert, 1983). We seek to exploit this redundancy and divide modes into a

low and high frequency bin, denoted by superscript l and h, respectively. Each linear

combination of Fréchet kernels of modes in each bin defines a new ”hyperkernel”:

Hlow
µ,κ =

Nl

∑
l=1

γ
lKµ,κ

l and Hhigh
µ,κ =

Nh

∑
h=1

γ
hKµ,κ

h , (2.2)

where Nl and Nh are the number of modes in each bin, and the subscripts µ,κ denote that
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the kernels refer to either shear or bulk attenuation. Though called averaging kernels by

Backus and Gilbert (1970), we have dubbed them "hyperkernels" to stress their useful-

ness for separating the effects of the depth dependence of attenuation from its frequency

dependence.

Each particular choice of γ l and γh will yield hyperkernels with different depth sensitivities.

Therefore, by requiring that γ l and γh yield hyperkernels with identical sensitivities to the

radial attenuation profile, it is possible to remove the trade-off between depth and frequency

dependence of attenuation measurements. Since we focus on the effective α in the mantle,

we also seek to eliminate the contamination from the inner core while averaging mantle

structure. We do this by requiring the hyperkernels to be zero in the core while providing

maximally uniform sensitivity in the mantle. In order to eliminate the contribution from

poorly-constrained mantle bulk attenuation, we seek hyperkernels that are insensitive to qκ .

These three coupled constraints can be written as:

Hhigh
µ = Hlow

µ and Hhigh
µ = Hlow

µ = b and Hlow
κ = Hhigh

κ = 0 (2.3)

where b is unity in the mantle and zero elsewhere. While the first constraint is paramount,

the others cannot be satisfied exactly and require the introduction of a damping parameter,

λ1. In light of Eq. (2), we write these conditions in condensed matrix notation as P ·Γ = B
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or as: 

Kl
µ −Kh

µ

λ1Kl
µ 0

0 λ1Kh
µ

Kl
κ 0

0 Kh
κ



 γ l

γh

=



0

λ1b

λ1b

0

0


(2.4)

The damping parameter λ1 allows us to select among all combinations of nearly-identical

hyperkernels those that have zero sensitivity to qκ and inner core qµ . Ideally, our hyperk-

ernels would only use modes whose attenuation measurements have the smallest published

uncertainties. Therefore, we seek γ l and γh that minimize the squared misfit:

S = B−P·Γ+λ2V · I , (2.5)

where V is a vector containing published variances of the q measurements of individual

modes in both bins, [ν l,νh], and λ2 is a constant that sets the importance of the constraint

on minimizing the resulting uncertainties.

To each hyperkernel corresponds a q value, which is a weighted average of the q measure-

ments of its constituent normal modes:

qlow =
Nl

∑
l=1

γ
lql and qhigh =

Nh

∑
l=1

γ
hqh. (2.6)
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Furthermore, if we assume that the uncertainties in the attenuation measurements of the

low- and high-frequency modes are uncorrelated, we can directly relate variances ν (ν ≡

σ2) in the mode q measurements to uncertainties in qlow and qhigh via

ν
low =

Nl

∑
h=1

γ
l
ν

l
γ

l and ν
high =

Nh

∑
h=1

γ
h
ν

h
γ

h. (2.7)

Since the two hyperkernels have identical sensitivity to radial attenuation structure but dif-

fering frequency content, differences in qlow and qhigh can be attributed to frequency de-

pendence of attenuation. These effects of frequency dependence can be accounted for by

projecting the individual mode q’s to a reference value q0 using:

q0i = qi

(
ωi

ω0

)α

. (2.8)

In the absence of systematic measurement error, qlow and qhigh will be reconciled at the ref-

erence frequency for the value of α that corresponds to the effective α of the mantle. Note

that this correction for the effects of frequency dependence must also be applied to vari-

ances V, and therefore affects the misfit function and through it the retrieved coefficients,

γ .

For each test value of α we can use the uncertainty on the q measurement of the hyper-

kernels (i.e. ν low and νhigh) to calculate the probability that the qlow and qhigh can be

considered identical at the reference frequency. Since the q of each hyperkernel can be
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represented by two Gaussian probability density functions (PDFs) with means qlow and

qhigh and variances ν low and νhigh, we seek to calculate the likelihood that sample q values

drawn at random from these two PDFs can be considered identical. The PDF that de-

scribes the difference between the two random samples is described by a Gaussian of mean

qlow−qhigh and variance ν low + νhigh. In addition to measurement uncertainty, the damp-

ing contributes to the uncertainties of qlow and qhigh by preventing the two hyperkernels

from being identical. We restrict this uncertainty to be small by requiring that the attenua-

tion values predicted by the two hyperkernels for an identical radial attenuation profile are

within 3% of one another. This is why we consider qlow and qhigh to be reconciled by a test

value of α if their difference is less than 3%. The value of 3% was found to be the most

stringent value that could be satisfied for a large range of damping parameters.

Having calculated the probability that a trial α value reconciles qlow and qhigh, we can

proceed to conduct a search for an optimal value of α which would maximize this proba-

bility. For the particular choice of damping parameters λ1, and λ2 used in constructing the

hyperkernels, this optimal α value is taken to be the measurement of effective mantle α .
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2.3 Results

2.3.1 Method validation

Armed with a method which has the potential to separate the depth- and frequency-dependence

of attenuation, we first proceed to quantify its α-resolving power. At the same time, we

investigate whether the existing normal mode attenuation measurements are sufficiently

numerous and precise for constraining α . To this end, we perform a series of synthetic

tests in which we generate q values of modes whose attenuation has been measured. We

assume the radial attenuation profile QL6 together with PREM elastic structure, because

the QL6 model fits the Earth-orbiting surface waves better than the attenuation structure

of PREM. We adopt a depth-invariant α value of 0.3 throughout the mantle and assume

frequency independent attenuation, i.e. α = 0, in the inner core. To each synthetic mode q

we assign the same variance ν as that of the corresponding real measurement. Generated

q’s and the corresponding kernels Kµ,κ are then distributed within two distinct frequency

bins. There are, of course, multiple choices for the frequency content of each bin. Tab. 1

specifies the frequency content and number of modes with available measurements for the

four different binning schemes used in this study.

In order to find the most likely α value, we explore α values between -1 and +1 subject to

a range of damping parameters λ1 and λ2 from 10−4 to 1 and from 10−6 to 10−2, respec-

tively. The values of λ1 and λ2 have to be small in order to ensure that the hyperkernels
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Low frequency bin High frequency bin
Upper Lower Number Upper Lower Number
bound bound of modes bound bound of modes

(s) (s) (s) (s)
A 3231 600 35 600 10 168
B 3231 700 26 700 500 23
C 700 500 23 400 200 70
D 400 200 70 200 10 58

Table 2.1: The four choices of upper and lower bounds on high and low frequency bins
used in this study. For each bin, the number of modes with available measurements is also
listed.

have identical shape. Fig. 2 (top row) shows the retrieved effective α for the four different

binning schemes (labeled from A to D), with warm colors indicating higher probabilities

than the cool colors. For all binning choices, the greatest likelihood is in excellent agree-

ment with the initial value of α regardless of the value assigned to the damping parameter

λ2, which controls the resulting variance. We stress that the retrieved likelihoods are stable

over a large range of damping parameters λ1 and λ2. Based on Fig. 2, we conclude that the

number and precision of existing attenuation measurements are indeed sufficient to retrieve

accurately the frequency-dependence of attenuation.

As expected, the uncertainty on the α measurement decreases as the variance damping λ2

increases. But, values of λ2 that are too large can result in significant differences between

hyperkernels and contaminate the extracted value of α . Note that in the case of the choice

D (high frequency bins), the uncertainty of the retrieved α is considerably larger than in

the case when lower frequency modes are included. This is because the higher frequency

overtone attenuation measurements are generally less precise than the measurements made
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at lower frequencies. The blanked areas correspond to situations when the difference in the

hyperkernels exceeded 3%.

The hyperkernels Hlow
µ and Hhigh

µ corresponding to schemes A - D are plotted in Fig. 2.

(bottom row). The hyperkernels are almost indistinguishable (the difference is less than

3%) and they vanish in the core. As for the hyperkernels Hlow
κ and Hhigh

κ , they remain neg-

ligible throughout the whole Earth. Peak of the sensitivity with depth reflects the frequency

content of the corresponding binning schemes; while lower frequency modes sample the

entire mantle (A and B), the higher frequency ones only sample shallower regions (C and

D).

We have also tested other binning schemes (not listed in Tab. 1) and other values of input

α , and our method consistently retrieves the correct α value. Changing the bounds of

the frequency bins results in a different population of modes in each bin. As a result, the

optimized hyperkernels may change as may the uncertainties on the α measurement. When

the frequency contents of the two hyperkernels are made to be very different, the problem

of finding a linear combination of mode sensitivities that will satisfy the three constraints of

Eq. (3) becomes more difficult. At the same time, hyperkernels with frequency content that

is too similar have difficulty resolving the effects of frequency dependence of attenuation,

as observed in panel D of Fig. 2.
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2.3.2 Effective α in the mantle

Having validated our approach, we apply our methods to the real q measurements. We use

a compilation of original measurements and published data provided by (Masters, personal

communication). Fig. 3 (top row) shows the retrieved α likelihoods for the same binning

schemes listed in Tab. 1. The retrieved α likelihoods are characterized by strikingly dif-

ferent trends than those extracted from our synthetic tests that assumed a frequency- and

depth-independent α . When all available measurements are used (binning scheme A), the

most prominent characteristic is a systematic increase of retrieved α with increasing λ2.

Highest likelihoods are reached at a zero value of effective α in the mantle. Analysis of

the lowest-frequency measurements (binning scheme B) accentuates this trend, while in-

dicating a negative value of effective α . When modes of intermediate frequency are used

(binning scheme C), the character of the retrieved α likelihoods changes significantly. The

most likely effective α in this frequency range is 0.1, and is largely independent of the

value of λ2 . Moving onward to the highest available frequencies (binning scheme D), the

most likely α values are positive, lingering around a value of 0.3, but suffering from large

uncertainties.

These systematic changes in behavior of retrieved α are clearly incompatible with a con-

stant α model, regardless of its absolute value. Therefore, neither the usual assumption of

frequency-independent attenuation often used in seismology (e.g. Dziewonski and Ander-

son, 1981; Kanamori and Anderson, 1977), nor the constant non-zero α models suggested
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by laboratory studies (Jackson et al., 2002), allow us to explain the observations. In fact,

Fig. 3 strongly suggests that α varies with frequency within the absorption band. In partic-

ular, mantle α appears to be negative at periods longer than 1000s, transitioning to a small

positive value in the period range∼ 1000-700s, and increasing again at periods shorter than

500s. It is important to realize that noise in the attenuation measurements might introduce

artifacts in the retrieved α signal. However, the observed systematic behavior is likely to

be a robust feature.

Frequency dependence of α

In order to better constrain the variation of effective α with frequency, we perform a series

of forward-modeling exercises. We start by allowing a single jump in α from negative to

positive values, i.e. we assume that at long periods q increases with increasing frequency,

while at short periods, q decreases with increasing frequency. We create several dozen trial

models by varying the frequency position and magnitude of the jump. Each of these models

is used to calculate a synthetic dataset, which is then analyzed in the same way as the actual

measurements. We find that no model with a single jump in α is capable of capturing the

complex character of the retrieved α shown in the top row of Fig. 3. Nevertheless, models

in which α transitions from negative to positive in the∼ 1000-400s period range reproduce

the character observed in the data better than any constant α model.

Allowing for a more complex frequency-dependent character of α , we fashion a set of trial



24

models characterized by jumps in α at two different frequencies. Given uncertainties in

the attenuation measurements and the possibly complex behavior of mantle α , no single

model is likely to explain all the features present in Fig. 3 (top row). However, we find

that a model in which α changes from a value of -0.4 at periods longer than 1000s, to a

value of 0.1 in the period range 300-800s, before changing to 0.3 at periods shorter than

200s, reproduces well the overall features present in the data (see bottom row of Fig. 3).

Our preferred model is shown in Fig. 4 and it is compared with laboratory studies and the

frequency-independent assumption. In constructing the figure, we have assumed that the

high-frequency corner occurs at 1 Hz where q−1 is 600 (Sipkin and Jordan, 1979), since our

study constrained the value of α and not of q−1. Of course, our preferred model of α should

be viewed as an example of a set of possible models, which must share its distinguishing

features: a negative α at periods longer than 1000s, and a positive and increasing α at

shorter periods.

Depth dependence of α

In order to investigate possible depth-dependence of α , we have fashioned hundreds of

models in which we allow α to vary with both frequency and depth. In these models,

α =−1 at periods longer than a prescribed critical period Tc, whereas it is allowed to take

on values between 0.0 and 0.3 at periods shorter than Tc. We then allow Tc to vary between

1000s and 400s in three different regions of the mantle: the upper mantle, transition zone,
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and lower mantle. None of the explored models fits the data as well as the preferred model

shown in Fig. 4; they are particularly inadequate in capturing the character of the high-

frequency data seen in panel D of Fig. 3. Nevertheless, the subset of the explored models

that is capable of explaining the low frequency features (panels A, B and C of Fig. 3) has

Tc = 1000s and α = 0.1 at periods shorter than Tc at all depths.

Because of the shape of the hyperkernels used in this study, our method is only weakly

sensitive to α and Tc values in thin layers, such as the transition zone and D”. Indeed,

because forward-modeling tests indicated that our sensitivity to the D” region was nearly

negligible, we have not parameterized it as distinct from the lower mantle. This lack of

sensitivity implies that even though none of the models in which Tc or α varied significantly

with depth were able to reproduce the behavior observed in Fig. 3, we cannot rule out

smaller variations in Tc, or even significant variations within thin layers such as D”.

For completeness, one might consider models in which the value of α is the same below

and above Tc, which corresponds to a model in which α varies with depth by not frequency.

However, this class of models has not been considered as a plausible solution to explain the

available attenuation measurements. Such a frequency-independent model would require

negative α values across a wide range of frequencies in large sections of the mantle in order

to match the characteristics observed in the top row of Fig. 3. Such behavior has been

suggested by neither theoretical studies nor by experiments, and is thus highly unlikely.

We note that these results are robust across different reference Earth models. The character
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of the retrieved α likelihoods remains largely unchanged when ak135 (Kennett et al., 1995)

is used instead of PREM (Dziewonski and Anderson, 1981). Using the QM1 (Widmer

et al., 1991) radial profile of attenuation instead of QL6 (Durek and Ekström, 1996) simi-

larly only marginally affects the retrieved likelihoods, confirming the fact that our method

allows us to constrain α independently of the radial attenuation profile. Of course, using

inappropriate reference models can result in sensitivity kernels sufficiently different from

those corresponding to the actual measurements to obliterate the sought-after α signal.

2.4 Discussion

We have devised a method capable of separating the frequency-dependence of attenuation

from its depth-dependence. After validating our method on a synthetic dataset, we demon-

strated that the number and precision of existing attenuation measurements are sufficient for

constraining α . Applying the approach to actual attenuation measurements of free oscilla-

tions and surface waves spanning the period range 3200s-50s, we observed that effective α

is likely to be frequency dependent. Specifically, α is negative at periods longer than 1000s

and positive and increasing from ∼ 0.1 to ∼ 0.3 at shorter periods (see Fig. 4). This con-

clusion runs against both the assumption of frequency-independent attenuation often used

in seismology, and the constant, positive α model suggested by laboratory studies (Jackson

et al., 2005).
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Having constrained α and its frequency dependence, we explored a large set of models in

which α varied with both frequency and depth. Our tests were motivated by the expec-

tation that α in the Earth depends on both frequency and depth, since the pressure- and

temperature-dependence of the activation enthalpy of the relaxation mechanisms giving

rise to the absorption band may induce a shift in its frequency extent with depth (Jackson

and Anderson, 1970; Anderson and Minster, 1979; Minster and Anderson, 1981; Ander-

son and Given, 1982). Despite this expectation, we were unable to observe any significant

variation of α with depth.

Our frequency-dependent model of α is physically plausible, and was suggested by the pi-

oneering study of Anderson and Given (1982) who constructed a mantle attenuation model

(ABM) in which the frequency location of the absorption band changed with depth. While

the ABM predicted positive α values in the midmantle for all frequencies considered in our

study, their upper and lowermost mantle regions were characterized by negative α values at

periods longer than 1000s. This is consistent with our findings. Further direct comparisons

between our preferred model and the ABM are not straightforward, since Anderson and

Given (1982) modeled both the depth- and frequency-dependence of attenuation, whereas

the novelty of our approach rests in its ability to constrain the frequency-dependence of

attenuation independently of its radial profile. We have also re-analyzed the dataset used

by Anderson and Given (1982) using our method, and found that the number and quality of

the measurements available to them were insufficient for a reliable estimation of α . Indeed,

Anderson and Given (1982) noted the lack of resolution of α and used only modes sensitive
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to the mid-mantle in order to constrain its value at∼ 0.15. Both our novel approach and the

dramatic improvement in the precision and number of available attenuation measurements

- we use twice as many as were available a quarter-century ago - has made it possible to

constrain the complex character of α in the mantle in a way that was unavailable when

ABM was created.

In addition to being physically plausible, our preferred model of frequency dependence of

attenuation is consistent with earlier studies that have relied upon body waves and have

focused on higher frequencies (see Fig. 4). A number of studies (Ulug and Berckhemer,

1984; Cheng and Kennett, 2002) looking at S/P ratios at frequencies greater than 40mHz

have argued for α values in the 0.1-0.6 range. Shito et al. (2004) used continuous P-

wave spectra to constrain α between 0.2-0.4 at periods shorter than 12s, while Flanagan

and Wiens (1998) found that an α value of 0.1-0.3 was needed to reconcile attenuation

measurements on sS/S and pP/P phase pairs in the Lau basin. Unlike these studies, however,

our model of α relies upon data that provide more uniform global coverage, and, therefore,

ought to more closely approximate the α representative of the average mantle.

A non-zero value of α carries important implications for the construction of radial profiles

of attenuation. Efforts at determining the radial profile of attenuation in the Earth have

routinely assumed that attenuation is frequency independent (e.g. Dziewonski and Ander-

son, 1981; Durek and Ekström, 1996). The resulting models have, therefore, mapped the

signal of frequency-dependence of q into its depth profile. The extent to which neglecting
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the frequency-dependence of α contaminates the true depth profiles of q can be probed by

comparing the magnitude of the variation in measured values of q to the variation expected

for different values of α . Such a comparison is attempted in Fig. 5, which shows the effects

that α can have on attenuation measurements; for our preferred model, the effects of α on

attenuation can be very significant. Therefore, we expect that the existing radial profiles

of attenuation are likely to be contaminated, and that they should not be used as-is to con-

strain the thermochemical state of the Earth’s interior. Nevertheless, if these models are to

be used solely for modeling the effects of Earth structure on seismic waves, then mapping

the frequency dependence of attenuation into its radial profile is not a problem.

The dependence of intrinsic attenuation on temperature can be described by the following

expression (e.g. Romanowicz and Mitchell, 2007):

q ∝ ω
−αexp(−αH/RT ) (2.9)

where H is the activation enthalpy, R is the gas constant, and T is the temperature. The

value of α , then, determines the functional form of δq/δT . When α is zero, δq/δT is in-

dependent of temperature, whereas when α is positive, δq/δT is exponentially dependent

on temperature (Minster and Anderson, 1981). Recent studies seeking to constrain lateral

attenuation variations rely on data with periods shorter than ∼ 300s (e.g. Gung and Ro-

manowicz, 2004). At these periods, our preferred model suggests a positive α value close
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to 0.3. This value implies an exponential temperature dependence of attenuation, and jus-

tifies the interpretation of lateral attenuation variations in terms of temperature variations.

Note that the amplitude of lateral temperature variations necessary to obtain the observed q

signal are therefore smaller than would be in the case of frequency-independent attenuation.

Similarly, a positive α value affects the anelastic correction to the velocity-temperature re-

lationships that need to be used when interpreting the lateral seismic velocity variations

(Romanowicz, 1994; Matas and Bukowinski, 2007).

Intrinsic attenuation causes dispersion of seismic velocities, decreasing the velocities of

longer period waves compared to shorter period ones. Properly correcting for the dispersion

effect is crucial when datasets with different frequency content are used to simultaneously

constrain velocities in the Earth (Kanamori and Anderson, 1977). Usually, the difference

in wave-speeds due to an attenuation value q at two frequencies ω1,2 is calculated using the

expression

V (ω2)
V (ω1)

= 1+
q
π

ln
(

ω2

ω1

)
, (2.10)

which is only valid when α = 0. However, non-zero values of α , as suggested by this study,

require the use of a different dispersion correction (Anderson and Minster, 1979; Minster

and Anderson, 1981)

V (ω2)
V (ω1)

= 1+
q(ω1)

2
cot
(

απ

2

)[
1−
(

ω1

ω2

)α]
(2.11)
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We can see from this expression that the values of α and q(ω1) will significantly affect the

magnitude of the dispersion correction. The relative difference between these two expres-

sions, though, is independent of q. For an α value of 0.3, the assumption of frequency-

independent attenuation will result in 25% error for a frequency ratio of 10 and a 50% error

for a frequency ratio of 100. Assuming that α = 0 substantially overestimates the velocity

dispersion, as pointed out by Anderson and Minster (1979) and results in differences that

are not negligible when compared to those between different models of Earth’s 1D velocity

structure (see Fig. 6). Indeed, the effect of non-zero α can be larger than the correction

applied to seismic velocities measured at high frequencies using spectroscopic laboratory

methods. We note that Eq. (10) is valid for frequency-independent α . When α varies

within the frequency range over which the dispersion correction is applied (i.e. ω1 to ω2),

Eq. (10) should be applied separately to each domain of constant α .

Finally, the precise knowledge of seismic velocity, its dispersion and associated attenua-

tion is important for meaningful comparisons with other geophysical observables, such as

the geoid (e.g. Romanowicz, 1990). For example, estimations of viscosity of the lower

mantle are based on values of Rs,ρ = ∂Vs/∂ρ parameter that (e.g. Richards and Hager,

1984; Ricard et al., 1993) do not include the anelastic effects. Matas & Bukowinski (2007)

showed that anelasticity may significantly affect the value of Rs,ρ and Rp,ρ , but pointed out

that a more precise knowledge of the absorption band and its characteristics is still needed.

Future work should thus be aimed at improving the precision of q measurements and the

development of radial q profiles that properly account for the frequency dependence of q.



32

Acknowledgments

This project was supported by the National Science Foundation (through NSF grants EAR-

0336951 and EAR-0738284) and by French CNRS-SEDIT program during the stay of

JM at University of California, Berkeley. VL acknowledges supported through a Graduate

Research Fellowship from the National Science Foundation. We wish to thank Guy Masters

for kindly providing us his attenuation measurement compilation and, along with Mark S.T.

Bukowinski, for inspiring discussions that helped improve the manuscript. This is Berkeley

Seismological Laboratory contribution no. 09-05.



33

Figure 2.1: Left: Attenuation measurements for the spheroidal fundamental mode branch
(compilation from http://mahi.ucsd.edu/Gabi/rem.html). Measurements based on nor-
mal mode analysis (plusses) show attenuation values 15-20% smaller than corresponding
surface-wave-based measurements (circles). Right: The data compilation used in this study
(Masters, personal communication) transitions smoothly from values more consistent with
normal mode analyses at low frequencies to values consistent with surface wave analyses
at higher frequencies.
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Figure 2.2: Top row: The retrieved α likelihoods for a synthetic dataset with input α = 0.3
for the four different binning schemes (A,B,C,D) detailed in Tab. 1. Warm colors indicate
greater likelihoods than cool colors. The retrieved α is in excellent agreement with the
input value, and it is independent of λ2. Bottom row: The hyperkernels associated with the
four binning schemes for λ1 = 0.01 and λ2 = 4 ·10−4. H low,high

κ are nearly zero everywhere
in the Earth, and H low,high

µ have no sensitivity to inner core structure and nearly identical
sensitivity in the mantle.
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Figure 2.3: Top row: The retrieved α likelihoods for actual attenuation measurements
binned according to the four different schemes (A,B,C,D) listed in Tab. 1. Warm colors
indicate greater likelihoods than do cool colors. Bottom row: Similar overall behavior
is obtained from synthetic q values generated using our preferred model of frequency-
dependent q (see text).
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Figure 2.4: Preferred model (solid line) of frequency dependence of attenuation within the
absorption band compared with constraints from laboratory studies (hachured region) and
the frequency-independent assumption (dashed line). In our model, α is approximately 0.3
at periods shorter than 200 s, decreasing to 0.1 in the period range 300-800s, and becoming
negative (-0.4) at periods longer than 1000s. We assume that the high-frequency corner
occurs at 1 Hz where q−1 is 600, past which frequency α is 1 (Sipkin and Jordan, 1979). It
is important to emphesize that we constrain the value of α and not of q−1.
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Figure 2.5: The effect of α on attenuation measurements can be significant. The solid
line represents the attenuation values predicted by QL6. If we consider these predictions
as representative of the q structure at a period of 200s, then values of α of 0.1 and 0.3
would result in q values indicated by the dashed and dotted lines, respectively. The effect
obtained in the same fashion but using our preferred model of α is delineated by triangles.
Note that the signal of frequency-dependence of attenuation can be significantly larger than
the discrepancies between the normal mode and surface wave measurements shown in Fig.
1.
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Figure 2.6: Accounting for the effects of frequency-dependence of attenuation is crucial for
velocity dispersion corrections. The solid line represents the VSV profile of PREM in the
top 600 km of the mantle at the reference period of 1s. By taking the PREM shear attenu-
ation structure to be appropriate at 200s (since it is derived from normal mode attenuation
measurements) and a value of α , we can account for velocity dispersion due to attenua-
tion. We calculate VSV at a reference period of 200s using α = 0 (dash-dotted line) and
α = 0.3 (long-dashed line). Assuming that α = 0 substantially overestimates the velocity
dispersion, as pointed out by Anderson and Minster (1979). The difference between the
profiles with different α values are similar in magnitude to those between different models
of Earth’s 1D velocity structure, such as ak135 (dotted line) and PREM.
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Chapter 3

Crustal effects in mantle long period

waveform tomography

3.1 Introduction

Recordings of surface waves and overtones provide unparalleled constraints on the struc-

ture of the Earth’s crust (e.g. Meier et al., 2007), upper mantle (e.g. Montagner and Tan-

imoto, 1991), and transition zone (e.g. Ritsema et al., 2004). This is because they offer

excellent global coverage, and are sensitive to elastic and anelastic structure in both the

crust and the mantle. Yet, in order to determine the seismic velocities and anisotropy in

the mantle, we must disentangle the effects of the crust from those due to the sought-after
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mantle structure. The ability of crustal effects to significantly affect retrieved models of

mantle velocities, even at long periods and on large scales, was recognised as early as

the pioneering work of Woodhouse and Dziewonski (1984). Accounting for the effects of

crustal structure requires knowing the velocity structure of the crust as well as accurately

calculating the effects of that structure on surface waves and overtones.

A number of efforts at determining the elastic structure of the crust have been carried

out over the past decade. Global tomographers have typically relied on models of crustal

structure derived from other datasets, such as refraction and reflection seismics, receiver

functions and geological data, (e.g. 3SMAC: Nataf and Ricard, 1996; CRUST5.1: Mooney

et al., 1998; CRUST2.0: Bassin and Masters, 2000), in order to predict and correct for

crustal effects. More recently, global and regional crustal thickness and velocity mod-

els derived solely from surface wave data have been developed (e.g. Meier et al., 2007;

Pasyanos, 2005).

Yet, since accurately modeling the effects of the crust on waves can be difficult, improved

maps of crustal structure do not automatically translate into improved corrections for crustal

effects. Within a normal mode formalism, which is useful for constructing and analysing

long period waveforms, the effects of heterogeneity on waveforms can be expressed as

shifts to the Earth’s eigenfrequencies, as well as the displacement field (eigenfunction)

associated with each vibrational mode. Woodhouse and Dziewonski (1984) applied linear

corrections, in which eigenfrequency shifts due to crustal structure are calculated in a 1D
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model, but the perturbations to the eigenfunctions are neglected, in order to remove the

effect of the ocean/continent crustal dichotomy from long period waveforms. Due to their

minimal computational costs, linear corrections have found widespread use (e.g. Chevrot

and Zhao, 2007; Gu et al., 2003). Li and Romanowicz (1996) went one step beyond simply

performing linear crustal corrections by allowing perturbations to the Mohorovičić (Moho)

depth in the inversion, which partially accounted for umodelled crustal effects.

However, variations in crustal thickness are often too large to be accurately handled by

linear corrections. In particular, the large differences in Moho depth between platforms,

shields, orogens, continental margins, and ocean basins, change the shape of the eigenfunc-

tions, thereby affecting the eigenfrequencies in a significantly non-linear fashion (Montag-

ner and Jobert, 1988). In order to account for this non-linearity, Montagner and Jobert

(1988) proposed a two-step approach in which the eigenfunctions and eigenfrequencies are

calculated exactly for a set of tectonic settings (thereby capturing the non-linear effects),

while perturbations away from these canonical 1D profiles are handled using linear correc-

tions. This approach has recently been implemented in full-waveform analyses by Marone

and Romanowicz (2007). Two global shear-wave speed and radial anisotropic models (Pan-

ning and Romanowicz, 2006; Kustowski et al., 2008) have been developed using these non-

linear crustal corrections. A similar approach, in which phase perturbations are calculated

exactly at each point along the raypath was implemented for fundamental-mode surface

waves by Boschi and Ekström (2002). It is important to note that these approaches, while

capturing some of the non-linearity associated with wave propagation through a heteroge-
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neous crust, fail to explicitly take into account 3D finite-frequency effects calculated for

the relevant 3D crustal model. Furthermore, when applied to higher modes and to high

frequencies, they can be very computationally expensive.

Here, we present an alternative method for performing crustal corrections. Like the afore-

mentioned methods, we calculate exactly the eigenfunctions and eigenfrequencies for a set

of tectonic settings, but instead of using these directly, we solve for scaling coefficients,

which, when applied to standard linear crustal corrections, mimic the non-linear effect.

The main advantage of this approach is that, once the correction factors have been calcu-

lated, it requires no additional computational costs aside from those associated with linear

corrections. This allows it to be more easily applied to overtones and to higher frequencies

than the standard quasi-non-linear approach.

We then proceed to validate our approach using a synthetic dataset generated using the

Coupled Spectral Element Method (Capdeville et al., 2003). First, we quantify the contam-

ination of mantle models developed using full-waveform inversion that can result from the

use of standard linear crustal corrections. Then, we demonstrate that our modified linear

correction method effectively suppresses this contamination. Our approach for quantify-

ing mantle contamination arising from crustal corrections is similar to that of Bozdağ and

Trampert (2008) who undertook a thorough analysis of crustal effects on phase velocities

of surface waves. Unlike that study, however, we model the complete seismic waveform in

order to not discard amplitude information. Also, our use of finite-frequency kernels in the
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vertical plane allows us to investigate crustal effects on overtones, which were not analyzed

by Bozdağ and Trampert (2008).

3.2 Theoretical background

In this study, waveform modelling is accomplished within a normal mode formalism, which

lends itself to constructing and analysing long period waveforms. Within this formalism,

an acceleration time-series is represented as a summation of the contributions of a set of

discrete, orthonormal modes of oscillation, each vibrating at a frequency ωk:

u(t) = ∑
k

Akexp(iωkt) (3.1)

The modes’ displacement field is represented radially by a set functions identified by index

n, and laterally by spherical harmonics of degree l and order m. For convenience, we

will use the index k to identify a mode defined by indices (n, l,m). The eigenfrequencies

and eigenfunctions for a given 1D Earth model can be calculated using computationally

efficient codes such as MINEOS (Woodhouse, 1998). The 2l + 1 modes with the same l

and n are collectively referred to as a multiplet, and in a spherically symmetric model, they

all have the same frequency. Source excitation and receiver orientation are represented by

Ak, and the expressions for its constituent parts can be found in Woodhouse and Girnius
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(1982).

First order perturbation theory can be used to account for effects of non-spherically-symmetric

structure (e.g. Woodhouse and Dahlen, 1978). In this approach, 3D structure perturbs the

frequencies of modes within a multiplet (called splitting), and couples energy within and

between multiplets of similar frequency. Calculating the coupling between all possible

pairs of modes can be computationally very expensive, so additional approximations have

been used in order to make the problem computationally tractable.

Romanowicz (1987) showed that considering coupling along a single mode branch (all l

and m for a given n) is, for large l, equivalent to accounting for average radial structure (1D)

along the great circle path from source to receiver. This coupling can be represented by

introducing a correction factor δω̃k to ωk in Equation 3.1, which quantity can be obtained

by integrating along the great circle joining source and receiver the local frequency shifts

δωk resulting from coupling within an individual multiple induced by 3D structure:

δω̃k =
1
∆

∫
∆

0
δωk(s)ds, (3.2)

where ∆ is the epicentral distance.

This approach, first implemented by Woodhouse and Dziewonski (1984), is appropriately

called the path average approximation (henceforth, PAVA). Expressing the frequency shifts

in the exponential has the benefit of somewhat relaxing the short-time limitation of standard
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first order perturbation theory by accounting for multiple forward scattering.

For the case relevant to this study, in which only the radii of discontinuities rd in the Earth

are perturbed by δ rd , local frequency shifts due to coupling within a multiplet can be

calculated in a linear fashion through the use of sensitivity kernels Hd
k , the expressions for

which can be found on pages 350-351 of Woodhouse and Dahlen (1978). Note that these

kernels are calculated for the spherically symmetric reference model:

δω
2
k ≡ 2ωkδωk = ∑

d
r2

dδ rdHd
k . (3.3)

While the path average approximation is highly successful at modeling fundamental mode

surface waves, it fails to capture the depth dependent sensitivity of overtone branches (see

Li and Romanowicz (1995)). That is why, when calculating the effects of Earth structure on

overtones, we must consider coupling between multiplets k and k′ across branches (differ-

ent n’s) (Li and Tanimoto, 1993). Doing this accounts for finite frequency effects of wave

sensitivity within the plane defined by the great circle joining source with receiver. In this

study, we rely on Non-linear Asymptotic Coupling Theory (NACT: Li and Romanowicz

(1995)), which is an implementation of across-branch coupling that relies upon asymptotic

expressions for spherical harmonics. In it, a linear correction term δu that captures the
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effects of cross-branch coupling is added to Equation 3.1:

δu(t) = ∑
k

[
−itAkδω̃k + ∑

k′⊂Γk

Dkk′Akk′

]
, (3.4)

with

Dkk′ =
exp(iω̃kt)− exp(iω̃kt)
(ωk +ωk′)(ω̃k− ω̃k′)

, (3.5)

Akk′ are the asymptotic forms of scattering integrals, and are given by:

Akk′ =
1

2π

∫ 2π

0
δω

2
kk′

[
Q(1)

kk′ cos( jφ)+Q(2)
kk′ sin( jφ)

]
dφ , (3.6)

where j ≡ l− l′ and the expressions for Q(1)
kk′ and Q(2)

kk′ can be found in Appendix A of Li

and Romanowicz (1995).

Now, the local frequency shifts δω2
kk′ account for coupling of multiplet k’ with multiplet k

that is induced by heterogeneity,

δω
2
kk′ ≡ 2ωkk′δωkk′ ≡ (ωk +ωk′)δωkk′ = ∑

d
r2

dδ rdHd
kk′ (3.7)

and the kernels, Hkk′ still refer to the spherically symmetric reference model, and can be

found in Appendix C of Li and Romanowicz (1996). For more details, see Romanowicz

et al. (2008).
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3.3 Standard Linear Crustal Corrections

We note that regardless of how PAVA and NACT incorporate the frequency shifts δω that

arise from 3D heterogeneity, they allow for these frequency shifts to be calculated in either

a linear way, as used by Woodhouse and Dziewonski (1984), or a non-linear one proposed

by Montagner and Jobert (1988). In the linear approach, we calculate δωk and δωkk′ using

Equations 3.3 and 3.7, with the kernels and discontinuity perturbations calculated for a

single spherically symmetric model. In the non-linear approach, the local frequency shifts

are calculated in a two-step approach. First, the eigenfrequencies (ωk) of the relevant modes

are calculated in one of a set of canonical models that most closely approximates the local

radial velocity profile. This calculation captures the non-linearity of the local crustal effect

on the eigenfrequencies. Then, the calculated frequency is modified using Equations 3 and

7, except that the kernels involved are calculated for the relevant canonical radial profile,

and the discontinuity radius perturbations δ rd are taken with respect to this model as well.

See Marone and Romanowicz (2007) for a more detailed explanation of this approach.

In order to quantify the inadequacy of linear crustal corrections, we divide the Earth’s

surface into 7 regions with similar crustal thicknesses and ocean depths. We base this

regionalization on Moho depth, since it is the dominant parameter governing the seismic

response of the crust at long periods. Starting with CRUST2 (Bassin and Masters, 2000),

we identify 6 regions characterized by Moho depth ranges of 10-25 km, 25-40 km, 40-50

km, 50-60 km, and >60 km. In order to capture the strong effect of a shallow (<2 km)
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Table 3.1: Physical parameters characterising the regions shown in Figure 3.1. Negative
elevations are filled with ocean of density 1.02 g/cc and VP 1.45 km/s.

Elevation Moho depth Density VP VS
Region (km) (km) (g/cc) (km/s) (km/s)

1 -3.00 9.67 2.86 5.95 3.14
2 -4.22 12.22 2.83 5.66 2.98
3 0.87 34.64 2.82 6.18 3.46
4 0.54 42.60 2.87 6.27 3.52
5 2.82 54.73 2.86 6.35 3.60
6 4.08 64.57 2.88 6.42 3.66
7 -0.80 25.76 2.82 5.71 3.11

ocean layer that characterizes the continental shelves, we introduce a seventh region. Figure

3.1 maps out the geographical extents of the 7 regions. For each region, we calculate an

average radial profile of density (ρ) and shear (VS) and compressional (VP) wave velocity.

The parameters characterising these profiles are shown in Table 3.3. Armed with a set of

radial models that define 7 canonical crustal types, we proceed to calculate the frequencies

ωk of the fundamental modes for each model. These frequencies are then compared with

those for PREM, and frequency shifts between PREM and each of the 7 regional models

are calculated as

δω
NL
k = ω

(i)
k −ω

PREM
k , (3.8)

where ω i
k represents the frequency of mode k in the canonical crustal model i. Since these

frequency shifts capture some of the non-linear effects of crustal structure, we identify them

with a superscript NL.

For each canonical crustal model, we can calculate the kernels Hd
k that, through Equation

3.3, relate perturbations in the radii of discontinuities with the resulting frequency shifts
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δωk of mode k. Note that these kernels only capture the effects of coupling within a mul-

tiplet. Figure 3.2 shows how sensitivity of fundamental modes to Moho depth and surface

topography vary as a function of mode frequency. Similarly, Figure 3.3 shows the average

sensitivities of modes in the first five overtone branches. Note that the basic assumption

that underlies standard linear corrections is that discontinuity kernels for different crustal

types do not appreciably differ from those of the reference model.

Even a cursory examination of the curves shown in Figure 3.2 shows that non-linear effects

of surface and Moho topography on fundamental modes dominate at frequencies above 15

mHz. A comparison of the magnitude of the kernels for spheroidal and toroidal modes

confirms the well-known fact (Dahlen and Tromp, 1998) that toroidal modes are signifi-

cantly more sensitive to crustal structure than are spheroidal modes. A number of differ-

ences between the sensitivity curves indicate that the non-linearity of crustal effects can

be non-intuitive. For spheroidal modes, oceanic models with thin crusts are associated

with greatest sensitivities to Moho depth. At frequencies higher than 25 mHz, however, a

continental-type model takes the lead. For toroidal modes, the story is entirely different,

with models with intermediate crustal thicknesses being associated with larger sensitivities

to Moho depth than either thin-crust oceanic models or thick crust continental ones. Other

examples abound. For instance, note the change in concavity of HS
topo between crustal types

4 and 5, whose crustal thicknesses differ by 12 km. Finally, we point out that for toroidal

modes, both surface and Moho kernels are more similar between models 1 and 6, than they

are between 6 and 4, even though differences in crustal structure are far larger between 1
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and 6. In short, the condition that discontinuity kernels for different crustal types do not

appreciably change is violated even at long periods.

Though the first five overtone branches are significantly less sensitive to topography and

Moho depth, Figure 3.3 shows that non-linear effects of crustal structure become signif-

icant at frequencies higher than ∼ 15 mHz. As is the case with the fundamental mode

branch, overtones show a number of interesting non-linear effects. For instance, even

though toroidal modes are far more sensitive to Moho depth in oceanic models, they are

less sensitive to it in PREM than in continental models. This is likely due to the fact that the

crust in PREM has two layers, while those of our canonical models have only one. The be-

havior of spheroidal modes’ sensitivities can also be counter-intuitive. First, unlike toroidal

modes, spheroidal modes are more sensitive to topography and Moho depth in continental

models than in oceanic ones. In fact, spheroidal mode frequencies are several times more

sensitive to discontinuity topography in continental, thick-crust models than they are in

thin-crust, oceanic models. Interestingly, in models with thick continental crust, the sen-

sitivity of spheroidal modes to discontinuity topography starts to decrease at frequencies

above ∼ 28 mHz. Thus, even for overtones, non-linear effects of crustal structure cannot

be neglected.

We can use discontinuity kernels calculated for the reference spherically symmetric model,

in this case PREM, to predict the effect of the canonical crustal structures on the normal

mode frequencies. To do this, we only consider the differences in the radii of the discon-
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tinuities between each canonical crustal model and PREM, neglecting the differences in

crustal velocities and density. This is an often used approximation of the true linear crustal

effect, and is appropriate because crustal velocities have been shown to have minimal ef-

fect on long period waves (e.g. Stutzmann and Montagner, 1994). Since the discontinuity

perturbations characterizing each canonical model are spherically symmetric (degree zero

spherical harmonic), they cannot give rise to coupling of energy between multiplets within

a dispersion branch (Dahlen and Tromp, 1998 pg. 652). As a result, considering coupling

within a multiplet is sufficient to accurately model fundamental mode surface waves, and is

likely to adequately model overtones as well, since coupling across branches is small, being

restricted to only modes with the same l. Therefore, we only consider coupling within a

multiplet and use Equation 3 instead of Equation 7 for calculating the frequency shifts. We

label the frequency shifts calculated in this standard linear approach δωSL
k . The dotted lines

in Figures 3.4 and 3.5 show the δωSL
k for fundamental modes and overtones and each of

the canonical crustal structures. A comparison of these approximate terms with the δωNL
k

calculated before (and displayed as solid lines) confirms that linear crustal corrections are

inadequate for both fundamental modes and overtones, even at long periods.
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3.4 An effective modification

As illustrated in Figures 2-5, standard linear crustal corrections are not successful at ac-

counting for the effects of variations in crustal and ocean thickness on surface waves and

overtones, even at periods as long as 100 sec. Therefore, we are interested in ways of cor-

recting the δωSL
k so that they better track δωNL

k . In order to accomplish this task, we are

confronted with a crucial choice.

We must decide which term or terms in Equation 3.3 to correct. Correcting Hd
k for each

crustal type is a natural choice, since the problem itself is inaccuracy of the linear correc-

tions, rather than the topography of discontinuities. However, since Hd
k needs to be cal-

culated for each mode, and in the case of cross-branch coupling, between pairs of modes,

correcting this term can be computationally expensive. Note that non-linear corrections

require changing Hd
k . Correcting δ rd , on the other hand, does not increase computational

costs, since reading one value of δ rd is just as computationally expensive as reading a

modified value. The problem with correcting only δ rd , of course, is that it is but a single

parameter for a given discontinuity, crustal type, and mode type. Nevertheless, the fact

that deviations between δωNL
k and δωSL

k change gradually with frequency (see Figure 3.4)

gives us hope that modifying δ rd might significantly improve the accuracy of δωSL
k .

We start the procedure by rewriting Equation 3.3 in matrix notation, where we only consider

N fundamental modes and identify perturbations relating to the Moho with a subscript m
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and those pertaining to the surface with t:



δωSL
1

δωSL
2

...

δωSL
N


=



rmHm
1 rtHt

1

rmHm
2 rtHt

2

...
...

rmHm
N rtHt

N



 δ rm

δ rt

 (3.9)

We attempt to improve standard linear corrections by introducing factors cm,t , calculated

for each canonical crustal type and mode type, that are added to δ rm,t before being multi-

plied by the kernel matrix (relabeled H). Written in vector notation, we seek c that min-

imises:

w−H(δrm,t + cm,t), (3.10)

where the vector w contains the non-linear frequency shifts δωNL
k . The least-squares solu-

tion to this minimisation problem is given by:

cm,t = (H′H)−1H′(w−Hδrm,t), (3.11)

where the apostrophe indicates the transpose.

We could have introduced a multiplicative correction term, instead of the additive one de-

scribed above. However, solving for such a term becomes unstable when the δ rd’s are

small. Given that discontinuity topography is likely to vary both above and below its depth
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in the reference model, the accompanying zero-crossings of δ rd will have adverse effects.

Because the non-linearity of crustal effects depends strongly on both crustal and mode

type, we perform the minimisation in Equation 3.11 separately for spheroidal and toroidal

modes, for fundamental modes and overtones, and for each crustal type. Once the set of

factors cm,t appropriate for a given mode type are obtained, we modify the surface and

Moho topography of CRUST2.0 at each point on the surface by the correction factor ap-

propriate for the relevant crustal type (obtained from Figure 3.1). Therefore, the crustal

type and correction factor information is fused into a single file that specifies a modified

discontinuity topography for each mode type.

The dashed lines in Figures 3.4 and 3.5 show the frequency shifts predicted by our modified

discontinuity radii for fundamental modes and overtones, respectively. Henceforth, we

label them δωCL
k . For the fundamental modes, the improvement in fit to δωNL

k is significant

over a large frequency range. The fit for the overtones is less good, though still significantly

better than that provided by standard linear corrections. When only long period waves (T >

60s) are considered, excellent agreement between δωCL
k and δωNL

k can even be achieved

when only correcting the Moho topography. In the section that follows, we use uncorrected

surface topography, modifying only the Moho radii.
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3.5 method validation

Having devised a method for improving standard linear crustal corrections, we attempt to

validate it by comparing its ability to predict crustal effects on waveforms against that of

standard linear crustal corrections.

3.5.1 Application to a synthetic dataset

The advent of fully numerical global wave propagation codes, such as the coupled Spectral

Element Method (cSEM Capdeville et al. (2003)), now allows accurate modelling of wave

propagation through highly heterogeneous media such as the Earth’s crust (e.g. Komatitsch

and Tromp, 2002). This advance offers us the opportunity to quantify how well standard

approximate techniques for treating crustal effects perform when applied to tomographic

inversions based on waveform modelling.

To this end, we generate a synthetic dataset of long-period three-component waveforms

for a set of 67 earthquakes selected from the global CMT catalog. We ensure a realistic

station distribution by only using stations at which the waveforms observed from the actual

earthquake are sufficiently well recorded that they would be used in our global tomographic

inversions. For a more detailed description of the data-selection criteria, see Mégnin and

Romanowicz (2000). Figure 3.6 shows the event and station distribution as well as raypath

density of the synthetic dataset.
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Our velocity model has a spherically symmetric velocity profile which is identical to PREM

(Dziewonski and Anderson, 1981) below the 400 km discontinuity. At depths shallower

than 400 km, the model is inverted to fit long-period waveforms starting from one of the

physical reference models (Cammarano et al., 2005), which are calculated from a fixed

composition (dry pyrolite) and a thermal profile using the elastic and anelastic properties of

principal mantle minerals. The mantle model is radially anisotropic above 220 km, by the

same amount as PREM. The crustal model has average crustal velocities and thicknesses

from CRUST2.0 (Bassin and Masters, 2000) filtered by a 5.6o Gaussian filter to avoid

spatial aliasing by the SEM mesh. Topography from ETOPO1 (Amante and Eakins, 2008)

is similarly filtered. Effects of the ocean, ellipticity, gravity, rotation and anelasticity are

all accounted for. The synthetic seismograms have energy at periods between 60-400 sec,

while earthquake source parameters are taken from the global CMT catalog.

3.5.2 Mantle contamination due to crustal structure

We start by expressing the Moho topography of CRUST2.0 and topography of ETOPO1

using a spherical spline expansion characterised by 642 knots and an average inter-knot

spacing of 7.9o (see Wang and Dahlen, 1995). We then use both standard and modified

linear crustal corrections to predict the effects of the crust on the waveforms that make up

our synthetic dataset.
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Figure 3.7 shows a comparison of transverse-component accelerograms calculated using

SEM and NACT with standard and modified linear corrections for the earthquake C032401C

recorded at 8 stations. When standard linear corrections are used, large phase-shifts are

apparent for long continental paths, and are especially large on the transverse compo-

nent, since Love waves are more sensitive to crustal structure than are Rayleigh waves.

For Rayleigh waves, phase-shifts and amplitude discrepancies are apparent, but are much

smaller, since linear corrections are more accurate (see Figure 3.4). Waveforms predicted

by our modified crustal corrections fit the SEM far better, and the improvement on conti-

nental paths is dramatic. Typically, the use of modified corrections for fundamental mode

surface waves decreases the variance between SEM and NACT synthetics by ∼ 65% on

the transverse and ∼ 35− 40% on the radial and vertical components. When only over-

tone wavepackets are considered, modified linear crustal corrections reduce the variance

by ∼ 30−40% for all the components.

The NACT synthetics are used to correct the SEM synthetic waveforms for the crustal

effects. Two sets of residuals are produced, one resulting from applying standard linear

corrections, and the other from our modified method. These residuals, which would ideally

be very small, are then inverted for mantle structure. The data are weighted by a diagonal

covariance matrix which serves to equalise lateral sensitivity, as proposed by Li and Ro-

manowicz (1996). The upper mantle is parameterised laterally with 642 spherical splines,

and in depth by 5 cubic splines centred at depths of 24, 121, 221, 321, 471 km (see Mégnin

and Romanowicz (2000)). At each point, we solve for two parameters - isotropic shear-
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wave speed V 2
S = (2V 2

SV +V 2
SH)/3 and anisotropic parameter ξ =V 2

SH/V 2
SV - and use scaling

relations to obtain VPV , VPH and η , as in Panning and Romanowicz (2004). The inversion

procedure is iterative and is stabilised by the introduction of an a priori model covariance

matrix, as described in Tarantola and Valette (1982). Any retrieved mantle structure is in-

terpreted as an artifact of unmodelled crustal structure, and will henceforth be referred to

as contamination. Therefore, if the residuals efficiently map into mantle structure, then the

inadequacies of crustal corrections can be expected to strongly contaminate existing man-

tle models. If, on the other hand, the residuals cannot be effectively modeled by mantle

structure, then they are less likely to contaminate the mantle model.

Figure 3.8 shows variations of isotropic shear-wave speed obtained from the inversion of

the residuals calculated using standard linear crustal corrections as well as our modified

approach. Both fundamental mode and overtone wavepackets are used. The final model

obtained with standard linear corrections explains a larger fraction of the starting variance

in the residual seismograms than does the model obtained using modified corrections. This

means that the inaccuracies of standard linear crustal corrections can be more easily mod-

eled by mantle structure than the inaccuracies of the modified correction technique we

propose; therefore, the use of standard linear corrections will contaminate mantle struc-

ture much more strongly than the use of modified method. For fundamental modes, the

model obtained using standard linear corrections explains 64% of the residuals on the lon-

gitudinal, 76% on the transverse, and 80% on the vertical component, whereas the model

obtained using modified corrections reduced the starting misfit by 44% for the longitudinal,
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32% for the transverse and 70% for the vertical component. For overtones, the obtained

model explains 47% of the misfit on the longitudinal, 42% on the transverse, and 57% on

the vertical component. Interestingly, the model obtained from modified crustal correction

residuals only marginally improved the fit to the overtones (ranging from no improvement

on the transverse component to 14% on the vertical). This indicates that the correction fac-

tors succeeded in eliminating nearly all of the mantle contamination arising from the use

of linear crustal corrections.

Anisotropic structure was held fixed during the first two iterations, and was allowed to

vary in the final 2 iterations. At each step of the inversion process, a range of a priori

model parameter variances was explored; small values muted, while large values amplified

the amplitude of the retrieved structure. Misfits were calculated for all of the resulting

models, and we chose a preferred a priori variance to be a compromise between achieving

large variance reductions and keeping model size small. All parameters have a correlation

lengthscale of 1000 km in the horizontal direction and 100 km in the vertical, which is

similar to that imposed by the parameterisation itself. Regardless of a priori variances, the

retrieved pattern of mantle contamination remained the same.

Note the strong tectonic character of the mantle contamination, which is seismically slow

beneath continents, where standard linear crustal corrections under-predict the effects of

crustal structure. In particular, anomalously slow regions underlying mountain ranges (e.g.

North American Cordillera) appear down to 100 km depth. At greater depths, most of
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the contamination is under the oceans, following the mid-ocean ridge systems, where the

contamination is seismically fast. When modified linear corrections are used, we can see

a significant reduction of contamination. In particular, amplitudes of contamination are

reduced, especially at shallowest depths. Mantle beneath the North American Cordillera,

for instance, is nearly free of contamination even at 40 km depth. Contamination beneath

the oceans is effectively suppressed. In fact, the tectonic character of the contamination

becomes less prominent, and less well-organised. It bears reminding that some of the

remaining contamination might well result from the imperfect distribution of crossing paths

afforded by our modest synthetic dataset.

The sensitivity kernels shown in Figure 3.2 show that the Love waves are significantly more

sensitive to shallow layer structure than are Rayleigh waves. This fact, combined with other

differences in the way that oceanic and continental crust affect Rayleigh and Love waves

(see Bozdağ and Trampert (2008)), suggests that inadequacies in crustal modelling can

map efficiently into mantle anisotropic structure. Indeed, our maps of lateral variations in

ξ confirm this suspicion. Figure 3.9 shows the contamination of ξ that results from the use

of standard and modified linear corrections. The maps shown are for the same model as in

Figure 3.8.

When standard linear corrections are applied, we retrieve enhanced VSV to VSH ratios, in-

dicated by warm colours in Figure 3.9, below both continents and oceans. Nevertheless,

contamination is stronger beneath continents, and is particularly prominent beneath cra-
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tons. Beneath Tibet, as well as the Canadian and Brazilian cratons, this contamination

extends to 225 km depth. Structure beneath the oceans also shows anomalously high ξ that

tracks along the mid-ocean ridge system; this signature peters out around 150 km depth.

Our modified linear corrections are successful at suppressing contamination in all tectonic

settings. In fact, signatures of all of the cratons except a small portion of the Brazilian

craton are completely removed. Anomalous structure beneath Tibet becomes very weak as

shallow as 100 km depth. Beneath oceans, no coherent contamination extends below 100

km depth.

Figures 3.8 and 3.9 attest to the ability of our modified linear corrections to minimise

contamination of mantle isotropic and radially anisotropic structure that could result from

the use of standard linear corrections. The success of our modifications is summarized in

Fig. 3.10, which plots as a function of depth the variance reduction for both the Vs and ξ

models resulting from the use of modified instead of modified linear corrections. We define

the variance reduction at radius r as:

V R(r) =
∫

θ

∫
φ

m2
slc(r,θ ,φ)−m2

mlc(r,θ ,φ)
m2

slc(r,θ ,φ)
dθdφ , (3.12)

where m(r,θ ,φ) denotes the value of the model at location (r,θ ,φ ). At depths greater than

150 km, our modifications reduce the contamination of ξ mantle structure by more than

half, and reduce by more than a third the contamination of isotropic structure at all depths.
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3.5.3 Application to long period waveform data

Having demonstrated the potential of the proposed technique for reducing the contamina-

tion of mantle structure from unmodelled crustal effects, we proceed to apply the method

to an actual waveform dataset used in the creation of the SAW642AN model of Panning

and Romanowicz (2006, henceforth PR06). The dataset consists of three-component long

period surface (T>60s) and body wave (T>30s) packets from 1191 events, and is detailed

in Table 1 of PR06.

We employ identical data weighting and parameterization as that used in construction of

SAW642AN. The primary difference is the removal of crustal effects via our modified

linear corrections as opposed to the approximate, regionalized non-linear corrections used

in PR06. We derive the final model after three iterations starting from SAW642AN. While

we do not derive a specific set of modified linear corrections for body waves (and indeed,

it is not obvious whether this approach, which does not take coupling between modes into

account, would be appropriate for body wave data), we choose to correct the body wave

data with the corrections derived for overtones, as it produces a better fit to the data than

standard linear corrections. Regularization is chosen such that the final model size (as

measured by the root-mean-squared amplitude of structure as a function of depth) closely

matches that of SAW642AN for the isotropic portion of the model, and is matched or

reduced in the anisotropic portion of the model.
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The following two findings summarize the effects of the use of our modified linear crustal

corrections on the retrieved mantle model: 1. The overall misfit to the data is reduced

for all wavepacket types (fundamental modes, overtones, and body waves); and 2. the

anti-correlation of upper and mid-mantle isotropic Vs structure present in SAW642AN is

eliminated (see Fig. 11), bringing the model to closer agreement with other models of

mantle shear wavespeed (e.g. Kustowski et al., 2008). While the improvement in fit is not

extremely large (variance reduction of the final model with the modified linear corrections

is 54.4% across all data types vs. 52.1% for SAW642AN using the regionalized non-linear

corrections), it is important to note that the better fit is obtained with a model that is smaller

in size, particularly in anisotropic structure, than the starting model. The detailed effects

on the retrieved isotropic and anisotropic structure are more complicated and are discussed

in a companion paper (Panning, Lekic and Romanowicz, in prep.), which also explores the

effects of damping and quantifies model uncertainties.

3.6 Discussion

In this study, we have quantified the inadequacies of standard linear corrections in wave-

form tomography, and shown how crustal corrections can contaminate retrieved isotropic

and anisotropic mantle structure to great depths. Our results have great bearing on re-

cent efforts at validating existing tomographic models developed with approximate wave
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propagation techniques using more accurate numerical approaches, such as SEM (e.g. Qin

et al., 2009). In particular, since tomographic models of mantle structure were developed

by predicting and correcting for the effects of crustal structure, they ought to be validated

by using the same crustal corrections. Our work implies that implementing these crustal

models in SEM is likely to result in very different crustal effects than those used to develop

the mantle model. Since the effects of the crust are much larger for horizontally polarized

shear waves, a straightforward crustal implementation in SEM is likely to find that models

developed using horizontally polarized shear waves are less able to explain the observed

waveforms than Vs models. Indeed, this is consistent with the findings of Qin et al. (2009).

We propose and validate a new method for improving linear crustal corrections. By con-

sidering a set of 7 crustal types, we quantify the inadequacy of standard linear corrections

at accounting for the effects of the crust on the fundamental mode surface waves and over-

tones. Then, we improve the accuracy of linear corrections by introducing additive factors

to the discontinuity topographies. Incorporating an additive correction factor to the dis-

continuity topography as opposed to the kernels results in no additional computation costs

beyond those of standard linear corrections. The correction factors depend on the local

crustal type, on the discontinuity considered, on the reference model used for calculating

the sensitivity kernels, as well as mode type (spheroidal vs toroidal and fundamental vs

overtone).

We use a synthetic dataset calculated using the Spectral Element Method for a 3D crustal
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model and a 1D mantle to explore contamination that may result from inadequate crustal

corrections. These tests show that the use of standard linear corrections can result in signif-

icant contamination of isotropic mantle structure down to depths of 150 km. In particular,

at depths shallower than 100 km, mantle Vs beneath continents will be artificially reduced

by the use of linear corrections; at greater depths, the oceanic ridges will appear artifi-

cially fast. Due to differences in crustal sensitivity of Rayleigh and Love waves, the ef-

fects on anisotropic structure are far more severe, and can potentially obliterate the mantle

anisotropic signal in the upper 200 km. Our results confirm earlier findings of Bozdağ and

Trampert (2008). When our modified linear corrections are applied to the SEM synthetics,

much of the mantle contamination is removed. Contamination of isotropic Vs is eliminated

below ∼ 75 km. The separate treatment of toroidal and spheroidal modes and fundamental

modes and overtones proved to be highly successful in suppressing the contamination of

radial anisotropy in the mantle.

We apply our new method for improving crustal corrections to the waveform dataset used to

construct SAW642AN (Panning and Romanowicz, 2006). We find that the better treatment

of crustal structure increases the fit to the data for all wavepacket types (body waves, surface

waves and overtones alike). Furthermore, it eliminates anticorrelation between upper and

mid mantle structure which distinguished SAW642AN from other global models of mantle

shear wavespeed structure.

Our tests with the synthetic SEM dataset shows that the method improves the accuracy of
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linear corrections equally well for fundamental modes as for overtones, though the total

crustal signal is, unsurprisingly, far larger for the fundamental mode surface waves. Since

the additive correction factors were calculated only accounting for coupling within multi-

plets, their success at modeling the true effects of crustal structure on overtones indicates

that the non-linear crustal effects on multiplet-multiplet coupling are similar to those on

coupling within a multiplet. This justifies our choice to neglect multiplet-multiplet cou-

pling when calculating the additive correction factors.

The remaining inadequacies of our modified crustal corrections are likely due to off-path

effects, source effects, limitations imposed by parameterisation, as well as the approximate

nature of our method. Our approach can easily be combined with methods that take into

account lateral sensitivity of surface waves. Accuracy of the method can be improved by

considering a larger set of crustal types that would better capture the true variability in

Earth’s crustal structure, as well as topographies of intra-crustal discontinuities (such as

the Conrad). We note that while increasing the number of crustal types and discontinu-

ities would make the calculation of the correction factors more computationally costly, it

would not increase computational costs associated with using the modified discontinuity

topographies. The modified linear crustal corrections that we have outlined in this paper

also present an advantage over numerical techniques such as the finite element or spectral

element codes since they are capable, albeit approximately, accounting for the effects of

near-surface, thin sedimentary layers; incorporating sedimentary basins in finite or spectral

element codes vastly increases their already large computational costs. Thus, we believe
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that the method presented here is particularly well-suited for taking advantage of ever-

improving knowledge of crustal structure.
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Figure 3.1: Map showing geographical distribution of the 7 crustal types used in this study.
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Figure 3.2: Discontinuity kernels Hd
k for surface topography (top row) and Moho depth

(bottom row) as a function of frequency. Spheroidal fundamental modes are in the left
column, while toroidal fundamental modes appear on the right.
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topography (top row) and Moho depth (bottom row) as a function of frequency. Spheroidal
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Figure 3.4: Frequency shifts of the fundamental toroidal (red) and spheroidal (black) due
to differences in crustal structure between each of the canonical crustal types shown in
Figures 3.1 and 3.3. Solid lines denote non-linear corrections (δωNL

k ), dotted lines indi-
cate linear corrections(δωSL

k ), and the dashed lines indicate linear corrections improved
using the method outlined in this paper. Only Moho corrections are applied in the upper
row, while corrections for both surface and Moho topography are required by the broader
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Figure 3.5: Average frequency shifts of the first five overtone toroidal (red) and spheroidal
(black) branches due to differences in crustal structure between each of the canonical
crustal types shown in Figures 3.1 and 3.3. Solid lines denote non-linear corrections
(δωNL

k ), dotted lines indicate linear corrections(δωSL
k ), and the dashed lines indicate lin-

ear corrections improved using the method outlined in this paper. Only Moho corrections
are applied in the upper row, while corrections for both surface and Moho topography are
required by the broader frequency range of the bottom row.
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Figure 3.6: Map showing earthquake and station distribution of our synthetic dataset.
Earthquakes (squares) are colour-coded by depth, while the stations are denoted by yel-
low triangles. The shading is proportional to the log of the number of raypaths at that
location.
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Figure 3.7: Comparison of Love waves predicted by SEM (black), standard linear cor-
rections using NACT (blue), and our modified linear corrections using NACT (red). The
earthquake is C032401C. The path to station TAU is largely oceanic, so both linear and
modified corrections are capable of capturing the true crustal effect. This is not the case
for continental paths, for which the use of standard linear corrections results in very large
phase shifts. The modified crustal corrections do much better,
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Figure 3.8: Contamination of mantle isotropic S-wave speed due to the use of standard
(left column) and our modified (right column) linear crustal corrections on fundamental
mode and overtone wavepackets. Warm (cool) colours indicate that using linear crustal
corrections would artificially decrease (increase) retrieved mantle Vs. Note the significant
amplitudes of contamination associated with standard linear corrections even at 150 km.
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Figure 3.9: Contamination of mantle radial anisotropy due to the use of standard (left col-
umn) and our modified (right column) linear crustal corrections on fundamental mode and
overtone wavepackets. Warm (cool) colours indicate that linear crustal corrections can
cause artificially low (high) ξ (VSV > VSH vs VSH > VSV ). Note the large amplitudes of spu-
rious anisotropic structure resulting from the use of standard linear corrections. Modified
linear corrections result in significant reduction in contamination of anisotropic structure at
all depths.
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Figure 3.10: Variance reduction (in percent, relative to models obtained by standard linear
corrections) provided by the use of modified linear corrections for the Vs (solid line) and
ξ (dashed line) structure as a function of depth.
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Figure 3.11: Radial correlation functions for the SAW642AN model (top) and a model
derived from identical data but in which the crustal corrections were performed using mod-
ified linear corrections proposed here (bottom). Note that the use of modified linear correc-
tions nearly eliminates the anticorrelation between upper and mid mantle structure appar-
ent in SAW642AN. This anticorrelation is not seen in most other global models of shear
wavespeed.



79

Chapter 4

A new method for global tomography

In this chapter, we motivate the development of a new, hybrid approach to tomography.

We then describe the methods underlying this new approach. We also describe the data

and creation of SEMum, a new upper mantle tomographic model of shear wave-speed and

radial anisotropy. We leave discussion of the characteristics of SEMum for the next chapter.

4.1 Introduction

Since the pioneering study of Dziewonski (1977), seismic tomography has provided in-

creasingly detailed images of the elastic structure of the Earth’s deep interior. This progress

was enabled by the proliferation of digital seismic data and the concomitant development
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of techniques for analyzing that data based on ray- and perturbation theory. At present,

several tomographic models of global structure purport to resolve structures as small as

1000 km (e.g. Panning and Romanowicz, 2006; Simmons et al., 2006; Kustowski et al.,

2008; Houser et al., 2008; Ritsema et al., 2004; Shapiro and Ritzwoller, 2002). Yet, only

the long wavelength variations of isotropic shear wave-speed appear to be robustly imaged

on the global scale (Dziewonski, 2005) and structures smaller than ∼ 2500 km correlate

poorly across the available models (Becker and Boschi, 2002). Discrepancies among mod-

els of variations of radial anisotropy (transverse isotropy) are present even at the longest

wavelengths (see Kustowski et al., 2008; Becker et al., 2007).

The discrepancies amongst global tomographic models of mantle elastic structure can arise

from a combination of factors, including data utilization, parameterization, regularization,

theoretical limitations and unmodelled crustal effects.

Forward modeling of wave propagation through a complex medium such as the Earth

presents a particularly difficult challenge to the robust mapping of small scale heterogene-

ity. This is because ray theory that underlies nearly all existing global tomographic models

is expected to break down as the lengthscale of the sought-after structure approaches that of

the input waveforms (see e.g. Wang and Dahlen, 1995; Spetzler et al., 2002). Even methods

that include finite-frequency effects through single-scattering approximations (e.g. Dahlen

et al., 2000; Zhou et al., 2006) are not accurate in modeling the effects of large anomalies

(see Panning et al., 2009), which, due to the red spectrum of mantle heterogeneity (Su and
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Dziewonski, 1991), are likely to dominate the observed waveforms.

Furthermore, traditional means of extracting information contained in seismic waveforms,

such as phase-velocity and traveltime measurements (e.g. Ritsema et al., 2004; Houser

et al., 2008) discard the constraints encoded in wave amplitudes. Yet it is precisely the

amplitude information that best constrains the gradients and short-wavelength variations in

elastic properties (Romanowicz, 1987). This is why Ferreira (2006) found that a number of

recent nominally high-resolution models of phase-velocity anomalies did not provide better

fits to observed amplitudes than a spherically symmetric model. The wealth of informa-

tion contained in amplitude measurements was illustrated by Dalton and Ekström (2006),

who demonstrated that phase velocity maps can be successfully extracted from amplitude

information alone.

Finally, long period seismic waves used for mapping mantle structure are sensitive to both

crustal and mantle structure. Thus, unmodelled effects of crustal structure can complicate

and, in the case of lateral variations of radial anisotropy, even obliterate the signal coming

from mantle structure (e.g. Bozdağ and Trampert, 2008). Since long-period waveforms do

not have the resolution required to jointly invert for crust and mantle structure, corrections

based on an assumed crustal model are typically performed. Linear corrections have been

shown to be inadequate in describing the effects of the crust on surface waveforms (e.g.

Montagner and Jobert, 1988). Even more accurate non-linear schemes (e.g. Marone and

Romanowicz, 2007; Kustowski et al., 2007) are liable to map inaccuracies in the assumed
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crustal structure, which, in the case of the most widely used CRUST2 model (Bassin and

Masters, 2000), can be substantial (e.g. Meier et al., 2007; Pasyanos, 2005). Thus, elimi-

nating the contamination of mantle images due to unmodelled crustal effects requires both

the inclusion of higher-frequency data that provide better resolution of crustal structure and

the use of forward modeling techniques capable of accurately predicting the effects of that

structure on observed waveforms.

We develop a high resolution model of upper mantle structure, by:

1. optimizing data utilization through the use of full waveform modeling;

2. minimizing forward-modeling errors by using the spectral element method (SEM:

e.g. Komatitsch and Vilotte, 1998), which is also capable of accurately representing

the effects of the oceans, topography/bathymetry, ellipticity, gravity, rotation and

anelasticity (Komatitsch and Tromp, 2002);

3. minimizing crustal contamination by supplementing our dataset of long period wave-

forms by higher frequency (T>25 s) group velocity dispersion maps.

This study develops and implements a new approach to waveform tomography, which ex-

ploits the accuracy of fully numerical wave propagation codes for forward modeling wave

propagation through the Earth. Computational costs are kept reasonable by relying on ap-

proximate techniques for calculating partial derivatives that relate structure perturbations

to waveform perturbations. The use of approximate partial derivatives decreases compu-
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tational costs several-fold compared to adjoint methods (Tarantola, 1984) applied recently

on the local (Tape et al., 2009) and regional (Fichtner et al., 2009a) scales. We stress that

this study represents a break from traditional practice of tomography; for the first time, a

global mantle model is constrained in large part using a fully numerical wave propagation

code that dispenses with the approximations and assumptions inherent in commonly used

tomographic methods.

4.2 Methods

Using seismic data to constrain the structure of the Earth’s interior can be cast as a prob-

lem in which probabilities P are assigned to different possible interior structures given the

available data. In this study, given a set of seismic waveforms and group velocity disper-

sion maps concatenated into the vector d, we infer the elastic parameters m describing the

mantle, i.e. P(m|d). In practice, calculating the probabilities requires us to:

1. quantify data uncertainty;

2. incorporate a priori knowledge of correlations between elastic parameters in order to

reduce the number of unknowns;

3. model propagation of seismic waves through heterogeneous mantle and crustal struc-

tures with minimal errors.
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Waveforms of seismic waves that propagate through structure m are given by a non-linear

function g(m). In practice, the computations and theory used to evaluate g(m) are inexact.

This modeling uncertainty can be approximately summarized using a covariance matrix

CT . We discuss the importance of this source of error in a separate section. If observational

noise is close to Gaussian, we can also summarize the data uncertainty using a covariance

matrix CD. We will summarize the a priori constraints on model parameters through a

model covariance matrix CM and a starting radially symmetric model m0.

Because g(m), the relation between earth structure and seismic waveforms, is non-linear,

inferring Earth structure from seismic data involves an iterative procedure. At the kth it-

eration, then, the partial derivatives of g(mk) with respect to model perturbations can be

calculated, though they are only likely to be valid in the vicinity of the model mk for which

they are evaluated. Though a number of different techniques exist (see, for example Taran-

tola, 2005), we opt for the quasi-Newton method, as it furnishes a compromise between

keeping down computational costs while ensuring a fast convergence rate. At each itera-

tion k, the model update δmk is obtained by solving the linear system:

[
I+CMGT

k (CD +CT )−1Gk
]

δmk = CMGT
k (CD +CT )−1[g(mk)−d]−mk +m0 (4.1)

where Gk is the matrix of partial derivatives (∂d/∂m) relating model perturbations to data

perturbations and evaluated for the current model mk. This expression is obtained by re-

writing expression (25) in Tarantola & Valette (1982) to avoid taking the inverse of the CM
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matrix. The mean of the Gaussian PDF that best approximates P(m|d) for iteration k +1 is

obtained by summing the model update δmk and the model mk.

4.2.1 Model parameterization and a priori information

Propagation of seismic waves through an arbitrary Hookean medium depends on 21 param-

eters of the stiffness tensor, and inferring the values of all these parameters at all locations

within the mantle is not feasible with available seismic data. However, by approximat-

ing the Earth as a transversely isotropic medium, we can drastically reduce the number

of free parameters while capturing the first order observation that horizontally polarized

surface waves travel, on average, more quickly than vertically polarized ones (e.g. Ander-

son, 1961; McEvilly, 1964). Such a medium can be described by introducing anisotropic

parameters, ξ = V 2
SH/V 2

SV and φ = V 2
PV /V 2

PH , in addition to the Voigt average istoropic ve-

locities VPiso and VSiso, and the parameter η which governs the variation of wave-speed at

directions intermediate to the horizontal and vertical. When η and φ are approximately

equal to one, which is very likely the case in the mantle, we can approximately relate Voigt

average velocities to those of vertically and horizontally polarized waves:

V 2
Piso =

1
5
(V 2

PV +4V 2
PH) (4.2)

V 2
Siso =

1
3
(2V 2

SV +V 2
SH) (4.3)
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as used by Panning and Romanowicz (2004). Because Love and Rayleigh waves at periods

longer than 60s are primarily sensitive to shear-wave structure (see, e.g. p 344-345 of

Dahlen and Tromp, 1998), we further decrease the number of parameters of interest by

choosing not to invert for lateral variations in the poorly-constrained VPiso, φ , ρ and η

paremeters. Instead, we parameterize the elastic structure of the mantle in terms of VSiso

and ξ and impose the following a priori correlations (which are fixed):

δ ln(η) =−2.5δ ln(ξ ) (4.4)

δ ln(VPiso) = 0.5δ ln(VSiso) (4.5)

δ ln(φ) =−1.5δ ln(ξ ) (4.6)

δ ln(ρ) = 0.3δ ln(VSiso) (4.7)

Discussion of the reasons for this choice of physical parameterization can be found in

Appendix A of Panning and Romanowicz (2006).

In depth, the model is expressed on 21 cubic splines νq(r) defined in Mégnin and Ro-

manowicz (2000). The knot locations are at radii: 3480, 3600, 3775, 4000, 4275, 4550,

4850, 5150, 5375, 5575, 5750, 5900, 6050, 6100, 6150, 6200, 6250, 6300, 6346, 6361km

and the surface. Laterally, we parameterize our model spatially in terms of spherical splines

βp(θ ,φ) (Wang and Dahlen, 1995). Thus, the value of a given model parameter m at any

location in the Earth (θ ,φ ,r) can then be calculated from a set of spline coefficients mpq
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by:

m(θ ,φ ,r) = ∑
p

∑
q

mpqβp(θ ,φ)νq(r) (4.8)

The splines are a local basis, and thus help minimize the mapping of structure in one region

into structure in distant regions, which can be an undesirable effect of global parameteri-

zations such as spherical harmonics. By parameterizing our model, we put strict a priori

constraints on the minimum lengthscale of structure allowed in our model. This truncation

results in spectral leakage (aliasing) of shortscale heterogeneity into longer lengthscales

(Trampert and Snieder, 1996), though the use of splines reduces this aliasing when com-

pared to spherical harmonics or spherical pixels (Chiao and Kuo, 2001). In order to further

reduce the aliasing of retrieved structure, we allow structure to vary at shorter length-scales

than those that we can reasonably expect to image and interpret (Spetzler and Trampert,

2003).

Having parameterized our upper mantle model, we proceed to summarize our knowledge

of upper mantle in terms of an average model (m0) and expected deviations from it. Our

reference and starting transversely isotropic velocity model has a spherically symmetric

velocity profile which is identical to PREM (Dziewonski and Anderson, 1981) below the

400 discontinuity. At depths shallower than 400 km, the model is inverted to fit long-period

waveforms starting from one of the physical reference models of Cammarano et al. (2005),

which are calculated from a fixed composition (dry pyrolite) and a thermal profile using

the elastic and anelastic properties of principal mantle minerals.
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We obtain a reference model of transverse anisotropy ξ by carrying out a grid search in

which we test several hundred candidate radial distributions of ξ against observed fre-

quencies of spheroidal and toroidal modes, keeping fixed the elastic structure. We allow

smoothly-varying ξ to deviate from 1.0 (up to 1.2) at mantle depths shallower than 320 km,

and do not allow values smaller than 1.0, which have been ruled out by numerous previ-

ous seismic studies (e.g. Dziewonski and Anderson, 1981). The best-fitting profile of ξ is

shown in Figure5.1, alongside the profile from PREM.

The starting crustal model has average crustal velocities and thicknesses from CRUST2

(Bassin and Masters, 2000) filtered to avoid spatial aliasing by the SEM mesh. Topography

from ETOPO1 (Amante and Eakins, 2008) is similarly filtered. Due to the inadequacies of

CRUST2.0, we supplement our dataset by shorter period group velocity dispersion maps,

and eventually invert for crustal structure. Our inversions for crustal structure require a

smooth starting crustal model (unlike CRUST2.0, which is parameterized in layers), which

we obtain through forward modeling described in a later section.

We stress that we could have chosen a laterally heterogeneous starting model. However,

we wanted to avoid biasing our results to any of the existing global tomographic models,

all of which have been developed using approximate first-order perturbation techniques.

Therefore, the model we have developed is independent of previous findings.

The a priori model covariance matrix CM, which specifies the expected deviation of true

mantle structure from that specified by our starting model, is defined by the variance σ2
0
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(which are the diagonal entries) and the horizontal and vertical correlation lengths, h0 and

v0, associated with each spline knot. Thus, the a priori model covariance for splines i

and j whose average horizontal and vertical correlation lengths are h0 and v0 and that are

separated by ∆i j horizontally and di j vertically, is given by:

ci j
M = const · exp

(
∆i j−1

h2
0

)
exp

(
−2d2

i j

v2
0

)
. (4.9)

We choose vertical and horizontal lengths in line with the expected resolution of our dataset

and similar to those used in previous studies, ∼100 km for vertical correlation length and

∼800 km for VS and ∼1200 km for ξ .

4.2.2 Modeling long period waveforms

Calculating the non-linear function g(m) that relates observed long period seismic wave-

forms to perturbations of isotropic shear wave-speed and radial anisotropy commonly uses

normal-mode summation approaches that rely on first order perturbation theory, asymp-

totic representations of Legendre polynomials and the stationary phase approximation (see

Romanowicz et al., 2008). The most common of these approaches, the path average (great

circle) approximation (PAVA: Woodhouse and Dziewonski, 1984) further simplifies the

calculations by neglecting heterogeneity-induced coupling between modes on different dis-

persion branches.
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Despite the inaccuracies of this approach (see, e.g. Li and Romanowicz, 1995; Romanow-

icz et al., 2008), PAVA allows computationally efficient computation of both g(m) and

Gk, and was used to develop the most recent radially anisotropic global mantle model

(S362ANI: Kustowski et al., 2008). An improvement was proposed by Li and Tanimoto

(1993), who advocated considering coupling across mode branches. Li and Romanowicz

(1996) implemented a related formalism to global tomography (NACT: non-linear asymp-

totic coupling theory), which introduced an additional term to PAVA that accounted for

coupling across normal mode dispersion branches. Panning et al. (2006) used NACT to

develop a radially anisotropic model of the mantle (SAW642AN).

Fortunately, the development of computational techniques capable of fully modeling wave

propagation through a complex, heterogeneous medium such as the Earth has enabled to-

mographers to move away from these approximate techniques. In this study, we use a

version of the Spectral Element Method that couples the mesh to a normal-mode solution

in the core, using a Dirichlet-to-Neumann operator (Capdeville et al., 2003) . This reduces

computational costs while preserving accuracy.

Calculating g(m) and CT

The use of the aforedescribed approximate techniques amounts to replacing the true rela-

tionship g(m) of eq. 1 with an approximate one, g’(m). Insofar as this modeling error can

be described by Gaussian uncertainties, the use of approximate forward-modeling schemes
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introduces the additional covariance matrix CT in eq. 1 (Tarantola, 2005). Since variances

are always positive, the additional variance arising from the use of approximate forward

modeling techniques will always increase the variances assigned to the observations. The

use of approximate techniques can be thought of as the addition of noise to the data!

Relative contributions of observation noise to modeling noise can be compared in order

to quantify the importance of using an accurate theoretical framework for modeling wave

propagation. Because of its sharp lateral gradients and its non-linear effect on surface

waves (Montagner and Jobert, 1988) crustal structure affects seismic waves in ways that

are not readily captured by standard modeling approaches that rely on ray theory and first

order perturbation theory. Bozdag and Trampert (2008) compared the most common non-

linear approach for dealing with crustal structure against reference synthetics calculated

using the spectral element method and found that for long paths it resulted in errors bigger

than typical measurement error. Lekic et al. (submitted) extended this analysis to wave-

forms and found the often-used linear approaches to calculating crustal corrections to be

inadequate. Even the effects of long-wavelength and smoothly-varying heterogeneities can

be inaccurately captured by standard modeling techniques. Panning et al. (2009) find that

for realistic Earth structures, the use of Born theory can result in waveform modeling errors

greater than measurement error.

Making the optimistic assumption that the modelization error is Gaussian and of the same

magnitude as measurement error, then the use of inaccurate forward-modeling schemes is
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equivalent to doubling the uncertainty on the data. If data measurement error is also Gaus-

sian, a dataset analyzed using accurate forward-modeling schemes carries the same uncer-

tainty as a dataset that is four times bigger but analyzed with inaccurate forward-modeling.

In fact, the more common situation is very much worse than this, since inaccuracies in

forward-modeling are often correlated with Earth structure and are of different magnitude

for different wavetypes. For example, inaccurately accounting for crustal structure affects

Love waves more than Rayleigh waves, and can easily obliterate the anisotropic signal of

the mantle (Lekic et al., submitted).

In this study, we minimize modelization error (rendering CT negligible for our model pa-

rameterization) by using SEM to accurately calculate the propagation of waves through a

complex and heterogeneous medium such as the Earth (Komatitsch and Tromp, 2002). Be-

cause our waves are insensitive to core structure and in order to reduce the computational

costs, we only use the spectral element method to calculate wave propagation in the crust

and mantle. In the core, wave propagation is calculated using a normal mode summation

approach and it is coupled to SEM solution using a boundary-condition operator (Capdev-

ille et al., 2003). Effects of the oceans, topography/bathymetry, ellipticity, gravity, rotation

and anelasticity are all accounted for.
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Calculating Gk

Due to the substantial increase in computational costs associated with the use of SEM,

we rely on the approximate NACT approach to calculate the partial derivatives Gk. Even

adjoint methods (e.g. Tarantola, 1984; Tromp et al., 2005) which make possible efficient

SEM-based calculation of Gk, would increase computational costs several fold, compared

to the use of NACT. This is because separately weighting wavepackets according to their

type and thus allow fitting of overtone energies and equalizing sensitivity to horizontally

and vertically polarized wavefields, would require separate calculation of adjoint kernels

for each wavepacket type. Furthermore, while NACT kernels are indeed approximate, they

do capture finite-frequency effects in the vertical plane defined by the great circle path,

and thus enable meaningful representation of the sensitivities of body and overtone phases.

While we expect that inaccuracies of NACT kernels may slow down the convergence of

our iterative procedure, we are confident that our accurate evaluation of the cost function at

each step will ensure that a meaningful solution is obtained. Indeed, the only requirement

on the kernels is that they capture the correct sign of the partial derivatives with respect to

a given model parameter once the kernels for all available data points are summed.

In the NACT formalism, a model perturbation δm affects the seismic waveform u(t) by

inducing coupling within a mode multiplet k and across multiplets k and k′ within and
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across dispersion branches:

u(t) = ℜe

{
∑
k

[
(1− itω̃kk)eiω̃kkt

∑
m

Rm
k Sm

k + ∑
k′≥k

eiω̃kkt− eiω̃k′k′ t

(ωk +ωk′)(ω̃kk− ω̃k′k′)
Akk′

]}
(4.10)

where k denotes a multiplet of radial order n and angular degree l, m is the azimuthal order

of singlets within the multiplet, Rm
k and Sm

k are the source and receiver vectors defined in

Woodhouse and Girnius (1982), ωk is frequency of multiplet k, and

ω̃kk = ωk +
1
∆

∫ R

S
δωkk′δkk′ds (4.11)

is the new mode frequency shifted by coupling within the multiplet. Coupling across mul-

tiplets is captured by the Akk′ term:

Akk′ =
1

2π

[
Q(1)

kk′

∫ 2π

0
δω

2
kk′cos[(l′− l)ϕ]dϕ +Q(2)

kk′

∫ 2π

0
δω

2
kk′sin[(l′− l)ϕ]dϕ

]
(4.12)

where the integrations are carried out of the great circle containing source and receiver

and the expressions for Q(1,2)
kk′ can be found in appendix A of Li and Romanowicz (1995).

Finally, the mode frequency shifts due to heterogeneity-induced coupling are given by:

δωkk′(θ ,φ) =
1

ωk +ωk′

∫ R⊕

0
δm(r,θ ,φ)Mkk′(r)r2dr (4.13)

where the kernels, Mkk′ can be calculated according to expressions derived by Woodhouse
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and Dahlen (1978) in the case when k = k′ and Romanowicz (1987) when k 6= k′.

From these expressions, we derive the partial derivatives that make up Gk (for an explana-

tion of how this is done, see Li and Romanowicz, 1995). Effects of lateral heterogeneity

δm on the seismic waveforms u(t) are fully captured by considering the coupling-induced

frequency shifts ωkk′ of normal modes. Symbolically, ∂u(t)/∂δm = F(δωkk′). In fact,

NACT waveform kernels can be thought of as weighted averages of individual mode fre-

quency kernels Mkk′ , in which the weights depend on the seismic source characteristics,

observation component, source-receiver distance and time. For the case of the fundamental

mode dispersion branch (n = 0) which comprises Rayleigh and Love waves, it is sufficient

to consider only along-branch coupling, and neglect modes for which n 6= n′.

4.2.3 Modeling group velocity dispersion

Consider a wave whose speed of propagation depends on three interdependent variables:

its frequency (ω), the elastic properties of the medium (m), and its wavenumber (κ). The

cyclic chain rule relates the partial derivatives of ω , m and κ:

(
∂ω

∂κ

)
m

(
∂κ

∂m

)
ω

=−
(

∂ω

∂m

)
κ

(4.14)

Introducing the group velocity U =
(

∂ω

∂κ

)
m

, and the wave-speed c = ωκ , we can rearrange
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this expression to obtain:

U
c2

(
∂c
∂m

)
ω

=
1
ω

(
∂ω

∂m

)
k

(4.15)

which expression can be used to calculate phase velocity kernels at a fixed period from

eigenfrequency kernels calculated at fixed wavenumber. It is important that these partials

are exactly the required ones, since we are keeping frequency constant, and phase (and

group) velocity measurements are made at a specific frequency, rather than a particular

wavenumber. If only coupling within a mode multiplet is considered, our waveform anal-

ysis is built upon kernels Mkk which capture the effect of a relative model perturbation

δm/m on the squared frequency ω2, i.e. Mkk = 2ωm
(

∂ω

∂m

)
κ

. Then, the logarithmic phase

velocity kernel, Kc = m
c

(
∂c
∂m

)
ω

can be written as:

Kc =
c

2Uω2 Mkk (4.16)

In order to obtain the expressions for group velocity kernels, we start by expressing U in

terms of c and (∂c/∂ω)m, and differentiate the expression with respect to m. Reorganizing,

we obtain expressions for the group velocity kernels:

(
∂U
∂m

)
ω

=
U2

c2

[(
2c
U
−1
)(

∂c
∂m

)
ω

+ω

(
∂

∂ω

)
m

(
∂c
∂m

)
ω

]
(4.17)

The second term of this expression involves taking the frequency derivative of the phase
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velocity kernels. This can be done numerically (Rodi et al., 1975) by differencing the

phase kernels calculated at ω +δω and ω−δω . In practice, we are concerned with group

velocity dispersion measurements made on the fundamental mode branch, so in order to

obtain group velocity kernel corresponding to the frequency of a mode with angular order

l = l0, we difference phase velocity kernels for l = l0−1 and l = l0 +1, and divide by the

difference in the eigenfrequencies ∆ω = ωl+1−ωl−1.

Casting equation 4.17 in terms of Kc, defines a new group velocity kernel KU which re-

lates logarithmic perturbations in model parameters to logarithmic perturbations in group

velocity:

KU =
m
U

(
∂U
∂m

)
ω

= Kc +ω
U
c

(
∂

∂ω

)
m

Kc (4.18)

Ensuring linearity

These kernels relate group velocity U at some point on the surface of the Earth (θ ,φ )

measured at frequency ω j to the elastic structure beneath that point. Let the vector mpq

represent a set of coefficients that capture earth structure parameters expressed in terms of

spherical splines βp(θ ,φ) and vertical cubic splines νq(r). The structure at point (r,θ ,φ )

is then given by equation 4.8.

In genereal, the relationship between model vector mpq and group velocity at a specified
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location U j(r,θ ,φ) (where j is indexes the frequency ω j at which the group velocity is

measured) is described by a non-linear function g(m). However, in the vicinity of a ref-

erence model impq, small changes in structure δm will not appreciably change the kernels

iKU
j (r); in this situation, deviations of group velocity from the reference value iU j will be

linearly related to the perturbations of the model parameters from impq:

∑
p

∑
q

mpq−i mpq
impq

βp(θ ,φ)
∫ a

0

iKU
j (r′)νq(r′)dr′ =

U j(r,θ ,φ)−i U j
iU j

(4.19)

where a is the radius of the earth. By introducing iMU
j,q as the radial integral of kernel

iKU
j,q(r) with vertical spline νq(r), we can re-write the expression as:

∑
p

βp(θ ,φ)
i

∑
q

MU
j,qdln mpq = dlniU j (4.20)

or in matrix notation:

(M⊗B) δ lnm = G δ lnm = δ lnU (4.21)

where B is the matrix of spherical spline values at points of interest, and ⊗ denotes the

Kronecker product. The matrix GT G will have the same dimension as that for the waveform

inversion, and the set of linear equations that represent the constraints provided by group

velocity maps can then be weighted and added to the set of equations furnished by the

waveform dataset.
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In order to ensure that we use these kernels only in the valid, linear regime in which model

perturbations are linearly related to group velocity perturbations, we need to generate a set

of reference models impq which span a sufficiently broad range of profiles of crustal and

mantle velocity structure to capture the heterogeneity present in the Earth. We accomplish

this by taking a set of five profiles that span the variability present in a pre-existing model of

upper-mantle and crustal shear wave-speed structure.To avoid biasing our modeling toward

pre-existing models of crustal structure such as CRUST2.0, we conduct a grid search to

develop a new starting model of crustal structure.

We do this by generating 21,000 models of crustal structure in which we vary the model

coefficients mpq so that crustal VS takes on values between 3-4.5 km/s in the oceans and 2-4

km/s in the continents. After a series of tests, we choose to keep apparent Moho depth fixed

at 60 km and introduce crustal ξ to compensate, allowing it to vary from 0.8-1.4. This is

because the introduction of anisotropy allows a smooth model to have a similar response for

long period waves as a model with thin layers (see Backus, 1962; Capdeville and Marigo,

2007). Having a deeper Moho avoids the need for meshing thin shallow layers, thereby

reducing computational costs associated with the spectral element method three-fold. The

group velocities for each of the candidate models are calculated by integrating the elasto-

gravitational equations (Woodhouse, 1998), and the model best predicting the observed

Love and Rayleigh group velocity dispersion is selected at each point. Our crustal model,

then, specifies a smoothed crustal structure beneath each point on the Earth that fits the

group velocity dispersion data. Even though the best-fitting model is selected considering
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only fundamental mode dispersion, we confirm that it also provides fits for overtones. This

procedure is similar to the one used by Fichtner and Igel (2008). We then use this smooth

crustal model alongside a long wavelength model of crustal structure to extract five refer-

ence models impq, within the vicinity of which the variations of group velocity lie in the

linear regime.

4.3 Data and noise

In this study, long period seismic waveforms and group velocity dispersion maps are used

together in order to constrain the variations of crustal and upper mantle shear wave-speed

and radial anisotropy. In order to better map shallow structure, we must consider higher fre-

quency waveforms, the modeling of which presents excessive computational costs. There-

fore, we choose to supplement our waveform dataset and improve constraints on shallow

structure using group velocity dispersion maps provided by Ritzwoller (personal commu-

nication). Shapiro and Ritzwoller (2002) explain the data and uncertainties associated with

these dispersion maps. Group velocity dispersion measurements have the advantage of

not being susceptible to cycle-skipping errors that beset phase measurements at high fre-

quencies. In addition, at the same period, the group velocity is sensitive to more shallow

structure than is phase velocity.

Our waveform dataset comprises fundamental mode Love and Rayleigh waves, which pro-
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vide excellent coverage of the uppermost 300 km, long period overtones crucial to imaging

the transition zone, and long period body waves which improve transition zone constraints

while introducing some sensitivity to the lower mantle. Sensitivity tests show that lower

mantle structure at most contributes a few percent to the misfit of the wavepackets that in-

clude body waves; nevertheless, we correct for lower mantle strucutre by using SAW24B16

model of Megnin and Romanowicz, 2000. Full waveform modeling of higher frequency

waves can be computationally costly and prone to errors due to cycle-skipping or mis-

mapping of multiply-reflected energy.

We use 3 component long-period accelerograms bandpass filtered using a cosine-taper win-

dow with cutoffs at 60 and 400s and corners at 80 and 250s . In order to ensure high signal

to noise level and limit the effects of possible complexity of the seismic moment-rate func-

tion, our dataset is restricted to 104 earthquakes with moment magnitudes 6.0 ≤Mw ≤ 6.9.

These are shown in Figure 4.1. Moment tensors and source location are taken from the Har-

vard Centroid Moment Tensor project (www.globalcmt.org). The waveforms are recorded

at broadband stations of the global seismic network (GSN), GEOSCOPE, GEOFON, and

several regional networks.

Each waveform is divided into wavepackets that isolate, in the time domain, the large am-

plitude fundamental-mode surface waves from smaller higher-mode waves. This allows

separate weighting coefficients to be applied to the wavepackets, so that the large-amplitude

signals are prevented from dominating the inversion. A detailed description of the scheme
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used for constructing wavepackets can be found in Li and Romanowicz (1996), henceforth

LR96. Our analysis includes both minor- and major-arc Love and Rayleigh waves and

overtones since the major-arc phases provide complementary coverage to that afforded by

the minor-arc phases. By including major-arc phases, we ensure much better coverage of

the southern hemisphere in which many fewer broadband stations are located compared to

the northern hemisphere. Figure 4.1 shows the density of ray coverage for the complete

waveform dataset. The inclusion of overtones is crucial for resolving structure deeper than

about 300 km, including the transition zone (e.g. Ritsema et al., 2003).

An automated, but user-reviewed, picking scheme is used in order to select only well-

recorded accelerograms (see Appendix B of Panning and Romanowicz, 2006). This is

done to avoid noisy data and to identify other problems including reversals of polarity,

timing errors, gaps, spikes and incorrect instrument response information. The data are

then hand-reviewed and the data covariance matrix CD is calculated. We assess the signal-

to-noise level of our dataset by taking the quietest 5 minute interval within the time-period

as a representative sample of underlying noise. The standard deviation of the signal is then

divided by the standard deviation of the noise in order to obtain a signal-to-noise summary

statistic for each wavepacket. The low-noise characteristics of the data summarized in Fig.

4.3 justifies our picking procedure. We use the scheme proposed by LR96 to approximate

the data covariance matrix CD by a diagonal matrix whose entries wi are the product of three

measures of data undesirability: 1. the signal root-mean-square level; 2. data content of

each wavepacket; and 3. path uniqueness. The final term is beneficial since it homogenizes
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the data coverage across the globe.

Because surface waves are sensitive to variations in both azimuthal and radial anisotropy

(e.g. Montagner and Jobert, 1988), accurate retrieval of variations in radial anisotropy re-

quires that the data provide broad sampling of azimuths, so that the azimuthal dependence

can be averaged out and not contaminate the model of velocity or radial anisotropy. We ver-

ify that our dataset provides sufficient azimuthal coverage by binning rays passing through

10o by 10o bins by azimuth for each component of our dataset and plot them in Figure 4.2

on a rose diagram.

4.4 Inversion and fits

We initialize our iterative inverse scheme with our starting 1D model, CRUST2 crustal ve-

locities and Mohorovicic topography, and invert for large-scale structure of the mantle VSiso,

which we accordingly parameterize with only 162 horizontal splines. At each iteration, we

calculate data misfits using SEM synthetic waveforms. We also re-calculate the kernels for

the partial derivatives matrix G in the updated 1D model, and approximately account for

the effects of 3D structure on the partial derivatives by re-calculating the frequency shifts

ωkk′ of equation 4.13. Crustal effects are also accounted for in the partial derivatives ma-

trix through the frequency shifts ωkk′ , though these are calculated using the modified linear

corrections approach developed by Lekic et al. (submitted to GJI).
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In the NACT formalism, the effect of 3D structure on both g(m) and the partial derivatives

matrix G is non-linear, because the frequency shifts appear in the exponent (see Equation

4.10). This allows us to introduce "minor" iterations between SEM runs, with the goal of

speeding up the convergence of the iterative scheme. Thus, in the early iterations, which

tend to produce large model updates δm, we introduce a few "minor" iterations in which

the waveform perturbation δu due only to the model update δmk (not mk the deviation of

the current model from the 1D profile) is added to the SEM synthetics for that iteration, and

the residual [g(mk +δmk)−d] is approximated by [g(mk)+g′(δmk)−d], where the NACT

synthetic is primed. These approximate residuals are then inverted with an updated partial

derivatives matrix for another perturbation δm′k. Thus, the effective model perturbation

δm for k-th "major" iteration is the sum of the model updates: δm = δmk + δm′k. SEM

synthetics are then used to calculate the exact residual for a model that incorporates this

total model update, i.e. [g(mk +δm)−d].

In order to minimize computational costs, we begin the iterative scheme with a well-

distributed subset (67) of the earthquakes in our dataset. Once we retrieve the long-

wavelength features of lateral heterogeneity, we refine our VSiso horizontal parameterization

to 642 horizontal splines, and expand the subset of earthquakes to 80. Starting with the third

iteration, we use the entire dataset (104 earthquakes) and allow long-wavelength variations

of radial anisotropy, parameterizing variations of ξ with 162 horizontal splines. We settle

on a final parameterization with 2562 splines for VSiso and 642 for ξ . This corresponds to

spherical harmonic expansions to degree ∼ 48 and 24, respectively.
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Our effective dataset expands with each subsequent iteration, as our model better captures

the true structure of the Earth and fits to waveforms improve. This is because we only use

data that are sufficiently similar to the synthetic seismograms at each iteration, in order to

avoid cycle-skipping problems to which waveform modeling in the time domain is suscep-

tible. We stress that fits improve systematically even for waveforms not included in the

inversion! The fact that the number of acceptable waveforms increases with refinements

to our model independently confirms the validity of our inversion scheme, our forward

modeling approach, and the use of approximate sensitivity kernels G.

After four iterations, we discovered that we could not simultaneously fit Rayleigh and Love

waves. This, combined with inaccuracies of CRUST2 at both the global (Meier et al., 2007;

Masters, personal communication) and regional (e.g. Pasyanos and Nyblade, 2008) scales,

motivated us to invert for crustal VSiso and ξ structure by adding constraints from Love

and Rayleigh group velocity dispersion maps in our inversions. At each iteration, the to-

mographic model is regionalized into five representative profiles or radial structure (impq),

and group velocity kernels are calculated for each of these; the kernel for the radial profile

most similar to that beneath a given point is then used in the construction of the partial

derivatives matrix G. We carried out four more iterations before our inversion appeared to

converge, and misfits only marginally improved for two consecutive iterations.

The final model, which we hereafter refer to as SEMum, provides ∼75% variance reduc-

tion with respect to the starting model to the fundamental mode waveforms recorded on
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the longitudinal and vertical components, and 53% improvement on the somewhat nois-

ier transverse component. For overtones, the final variance reduction was ∼40% on all

components, probably due to the higher levels of noise contribution in these wavepackets.

Mixed, fundamental-overtone wavepackets had variance reductions of ∼70% on the verti-

cal and longitudinal component, and >80% on the transverse component. Figures 4.4 and

4.5 show waveform fits before and after inversion for a typical event. Variance reduction

for the group velocity dataset is ∼ 60%.

Since our waveform misfit function is affected by both amplitude and phase differences be-

tween data and synthetics, we separately analyze the contribution of phase alignment and

amplitude similarity to the variance reduction for different wavepacket types and compo-

nents. The results of this analysis are summarized by histograms in Figure 4.6 for the ver-

tical component, and in Figure 4.7 for the transverse component. The root-mean-squared

waveform misfits between data and synthetics in both the starting model (gray) and SE-

Mum (purple) are shown in the left column of both figures. These are calculated by tak-

ing the square root of the variance of the residual seismogram between the synthetics and

data, normalized by the variance of the data. We can see that for both components and all

wavepacket types, misfit is reduced, though the reduction is more apparent for the minor-

arc phases than the more-noisy major-arc ones, and for surface waves than overtones.

The middle column of each figure shows histograms of the correlation coefficient between

the synthetic and data waveforms. Correlation coefficients are only sensitive to phase align-
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ment and are independent of amplitude misfits. Comparing the histograms for the starting

model and SEMum synthetics, we see dramatic improvement in phase alignment for all

wavepacket types, though, once again, we see poorer alignment for overtones and major-

arc phases. In order to probe the improvement in amplitude fit, we calculate the envelopes

of both data and synthetics and calculate the ratio of the ten largest data values divided by

the ten largest values for the synthetics. The third column of both figures shows histograms

of the natural logarithm of this ratio; a value of zero is perfect amplitude agreement, nega-

tive values indicate that synthetic waveforms are too large and positive values indicate that

the synthetic waveforms are too small. While SEMum synthetics clearly have more similar

amplitudes to the observations than do synthetics in the starting model, the improvement is

not dramatic. Thus, the vast majority of the waveform improvement provided by SEMum

results from phase alignment rather than amplitude fits.

4.5 Resolution Tests

In order to ascertain the reliability of our model, we undertake a series tests using the res-

olution matrix. Analyses that rely upon the resolution matrix help quantify the resolving

power of a model given the data distribution, sensitivity and noise, as well as the amount

and character of a priori information used. However, resolution matrices are strictly only

valid for linear problems, though they remain approximately valid for mildly non-linear
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problems (e.g. Tarantola, 2005). Furthermore, they do not in any way account for inaccu-

racies due to theoretical and computational approximations. Because our hybrid method

of tomography takes advantage of accurate SEM synthetics and thereby substantially re-

duces theoretical and computational errors, analysis of the resolving power of our dataset

based on the resolution matrix is more appropriate in our case than for other tomographic

inversions to which it is commonly applied.

By applying the resolution matrix operator on a set of synthetic input models, we obtain

output models which capture the ability of our dataset to image the input structure. Be-

fore proceeding to explore the geographic resolving power of our dataset, we conduct a

set of tests that explores the expected amount of cross-contamination between elastic and

anelastic structure in SEMum. The left panel of Figure 4.8 shows the retrieved VS anoma-

lies for an input model that contains only ξ structure, which is identical to the ξ structure

of SEMum. We can see that variations of isotropic shear wave-speed are not likely to be

contaminated by anisotropy. The right panel of Figure 4.8 shows the retrieved ξ anomalies

for an input model that contains only VS structure, which is identical to the VS structure

of SEMum. Once again, the contamination is negligible (smaller than 0.5% at all depths);

we conclude that our retrieved ξ structure is unlikely to be contaminated by variations of

isotropic shear wave-speed, insofar as those are captured by SEMum.

We explore the resolving power of our dataset at different depths by considering a set of

input checkerboard patterns of various lengthscales. Figure 4.9 shows checkerboard tests
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in which the input model contains only VS variations; we show both VS and ξ variations of

the output model. At 300 km depth, we are able to robustly resolve both the amplitude and

pattern of isotropic shear wave-speed variations with lengthscales of ∼1500 km. Patterns

with larger scale features are also robustly retrieved, and the smallest resolved lengthscale

is even shorter at shallower depths. At a depth of 600 km, however, our resolution de-

grades, and we can only robustly retrieve VS variations that are 2500 km across or bigger.

Furthermore, whereas contamination of ξ structure was undetectable at 300 km depth, it is

small but present in the transition zone.

Checkerboard resolution tests shown in Figure 4.10 demonstrate that our resolving power

for variations of ξ is weaker than for VS. At 300 km depth, the minimum lengthscale

of robustly imaged ξ structure is somewhat smaller than ∼2500 km. However, in the

transition zone, we are only able to resolve anomalies 4000 km across. While no significant

contamination of VS structure by variations in ξ are seen at either depth for the chosen

checkerboard lengthscales, we note that smaller scale variations in ξ map strongly into VS

variations at 600 km depth. These tests show that our dataset of overtone wavepackets

needs to be expanded in order to provide resolution of anisotropic structures shorter than

4000 km in the transition zone.



110

 

 

log10 of Ray Density                Earthquake Depth (km)
3.6718 3.5106 3.3494 3.1882 80 239 398 557

Figure 4.1: Map showing the earthquakes used in our study, which are colorcoded accord-
ing to centroid depth. The shading indicates the ray coverage number density on a log
scale.
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Figure 4.2: Rose diagrams showing the azimuthal distribution of raypaths passing through
each 10o by 10o block. Note that the azimuthal coverage is good for the longitudinal (top),
transverse (middle) and vertical components (bottom), indicating that we are unlikely to
map azimuthal anisotropy into the variations of isotropic velocity and radial anisotropy.
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Figure 4.3: Histograms of the summary signal-to-noise ratios for each of the wavepacket
types used in this study. The signal-to-noise ratios are approximated by taking the signal
standard deviation (σsignal) and dividing it by the noise standard deviation (σsignal). We can
see that even the least-well recorded wavepackets (second-orbit toroidal overtones) have
noise levels below 20 %, while the minor-arc Rayleigh and Love waves have typical noise
levels of only 3 %.
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Figure 4.4: Observed minor arc (top) and major arc (bottom) Rayleigh waveforms (black)
are compared to synthetic waveforms predicted by the starting model (red) and SEMum
(green). The earthquake (blue) is the 2003 San Simeon earthquake and the station locations
are marked by red triangles.
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Figure 4.5: Observed minor arc (top) and major arc (bottom) Love waveforms (black)
are compared to synthetic waveforms predicted by the starting model (red) and SEMum
(green). The earthquake (blue) is the 2003 San Simeon earthquake and the station locations
are marked by red triangles.
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Figure 4.6: Measures of misfit between observed waveforms and those predicted by the
starting model (gray) and SEMum (purple) for the vertical component. Left panels show
histograms of root-mean-squared misfits normalized by the observed waveforms. The cen-
ter panels show histograms of correlation coefficients between data and synthetics, which
are only sensitive to phase alignment. The right panels show histograms of the natural log-
arithm of amplitude ratios between the data and synthetics (0=perfect fit). Different rows
are for different wavepacket types: a. minor-arc Rayleigh waves; b. major-arc Rayleigh
waves; c. minor-arc overtones; d. major-arc overtones; e. mixed.
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Figure 4.7: Measures of misfit between observed waveforms and those predicted by the
starting model (gray) and SEMum (purple) for the transverse component. Left panels show
histograms of root-mean-squared misfits normalized by the observed waveforms. The cen-
ter panels show histograms of correlation coefficients between data and synthetics, which
are only sensitive to phase alignment. The right panels show histograms of the natural log-
arithm of amplitude ratios between the data and synthetics (0=perfect fit). Different rows
are for different wavepacket types: a. minor-arc Love waves; b. major-arc Love waves; c.
minor-arc overtones; d. major-arc overtones; e. mixed.
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Figure 4.8: (left) Maps of output Voigt average shear wave-speed variations with respect
to the average velocity at each depth that are retrieved for an input model with no VS
variations and ξ structure identical to that of SEMum. No significant contamination of VS
by anisotropic structure is therefore expected in SEMum. (right) Maps of radial anisotropy
parameter ξ that are retrieved for an input model with no ξ variations and VS structure
identical to that of SEMum. Once again, no significant contamination of ξ by VS structure
is expected in SEMum.
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Figure 4.9: Tests of resolution of isotropic Vs structure. The input patterns are shown in the
left column, the retrieved Vs pattern is shown in the center column, and the contamination
of the anisotropic structure (ξ ) is shown in the right column. These tests indicate that we
robustly resolve anomalies of ∼1500 km across at 300 km depth, and ∼ 2500 km across
at 600 km depth. Resolution is better at shallower depths. Furthermore, there is very little
depth-smearing of structure (< 100km) and negligible mapping of Vs structure into ξ .
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Figure 4.10: Tests of resolution of anisotropic parameter ξ . The input patterns are shown
in the left column, the retrieved ξ pattern is shown on the right, and the contamination of
Vs structure is shown in the center column. These tests indicate that we robustly resolve
anomalies of ∼2500 km across at 300 km depth, and ∼ 4000 km across at 600 km depth.
Resolution is better at shallower depths. While there is very little depth-smearing of struc-
ture (< 100km) and negligible mapping of ξ structure into Vs for well-resolved structures,
both effects increase for shorter-lengthscale anomalies.
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Chapter 5

A new upper mantle anisotropic model

5.1 Radial profiles of VS and ξ

Figure 5.1 shows the retrieved profile of isotropic shear wave-speed and radial anisotropy

of SEMum, compared to those of PREM, our starting model, and the latest 1D reference

model developed by the Harvard group (REF: Kustowski et al., 2008). While the models

show very good agreement at depths greater than 300 km, substantial differences exist at

asthenospheric depths.

The VS profile of SEMum is characterized by a rather narrow (<100 km) low velocity

zone (LVZ) centered at a depth of ∼ 100 km, with slowest velocities of 4.4 km/s. The

LVZ is bounded below by a rather steep velocity gradient, with velocities increasing by
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∼ 12.5 m/s/km down to ∼ 200 km depth. This velocity structure is not present in REF

or our starting model. In PREM, the very large velocity jump associated with the 220

discontinuity, which is not thought to be a global feature, may well obscure a steep gradient

that we observe. Indeed, the TNA model of Grand and Helmberger (1984), obtained by

forward-modeling of waveforms that traverse the western United States is characterized by

a very similar LVZ to that in SEMum, albeit with much lower minimum velocities as to be

expected in a tectonically active region.

We leave for future work the intepretation of the radial velocity profile of SEMum in terms

of thermal and compositional variations with depth. In particular, the inclusion of con-

straints from mineral physics (e.g. Cammarano et al., 2009; Xu et al., 2008; Cammarano

et al., 2005) can shed light on whether the narrow asthenospheric LVZ of SEMum can be

explained with temperature alone. A separate question is whether the large velocity gra-

dients we find at the base of the LVZ are consistent with a purely thermal origin. Finally,

is our velocity profile below 300 km consistent with a pyrolitic composition, or does it re-

quire enrichment in garnet-rich components as proposed by Cammarano and Romanowicz

(2007).

We validate radial profiles of VS and ξ of SEMum against measurements of frequencies of

toroidal and spheroidal free oscillations on the first four overtone branches. Because we

did not use any free oscillation frequencies in the inversion of SEMum, this represents an

independent test of our model’s predictive power. Figure 5.2 shows the predicted frequen-
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cies of free oscillations for SEMum and PREM calculated using a modified MINEOS code

(Woodhouse, 1998). On average, our model fits measured frequencies better than PREM,

even though these were used in constructing PREM. The most dramatic improvement is

in the fundamental mode spheroidal modes, which we match almost within measurement

uncertainty at frequencies higher than 5 mHz, though this comes at the expense of slightly

degrading the fits at longer periods (though we are always with 0.3% of the observed fre-

quencies). Fits to the first overtone at long periods ( 3 mHz) for both spheroidal and toroidal

modes are somewhat degraded, except for spheroidal modes at periods longer than 300 sec,

where we note a modest improvement in fit. The fits for higher overtone branches are

comparable to those of PREM.

No consensus exists concerning the radial profile of ξ in the upper mantle. The ξ profile of

the model SAW642AN (Panning and Romanowicz, 2006) obtained by long-period wave-

form modeling using NACT mirrors that of PREM (see Figure 5.1), peaking at the top of

the LVZ (below the fast lid associated with the lithosphere), and decreases down to unity by

∼ 220 km. Recent models obtained by the Harvard group (ND08: Nettles and Dziewoński,

2008; S362ANI: Kustowski et al., 2008), on the other hand, find anisotropy peaking at ∼

120 km, decreasing above and below that depth, and nearly disappearing by ∼ 250 km.

The ξ profile of SEMum is very different from that in PREM, showing peak values of ξ

at a depth of 150 km, which is significantly deeper than the peaks in S362ANI and ND08.

Like all of these models, we do not find that VSH is substantially faster than VSV on average

at depths below 250 km.
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The discrepancies between existing profiles of ξ can be due to a number of factors, includ-

ing bias due to the use of different starting models, approximate treatment of kernels in a

radially anisotropic medium, use of regional kernels, different approaches to performing

corrections for crustal structure, as well as different regularization schemes and datasets

used. We believe that our retrieved profile of radial anisotropy is likely to more closely

represent the true variation of ξ in the mantle because we: 1. reduce bias by starting from

a model found by a grid search to fit measured free oscillation periods; 2. reduce crustal

contamination and inaccuracies inherent in approximate techniques by using the spectral

element method for calculating wave propagation.

Independent indications of the likeliness of different radial anisotropy profiles can be gleaned

from theoretical work. Becker et al. (2007) constructed models of radial anisotropy result-

ing from formation of lattice preferred orientation (LPO) due to mantle flow driven by

prescribed plate velocities and by density differences scaled from variations of shear-wave

velocity. They found that inclusion of lateral viscosity variations through a pressure, tem-

perature and strain-rate dependent olivine creep law (assuming A-type slip systems, see

Karato et al., 2008), significantly improved the fit to the seismic models. Whether or not

the authors restricted LPO formation to dislocation creep or both dislocation and diffusion

creep, radial anisotropy peaked at 150 km depth, deeper than that in S362ANI and ND08.

This prediction, however, agrees with the depth of largest values of ξ in SEMum, providing

further indication that we successfully characterize the profile of upper mantle anisotropy

compared to previous studies.
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Next, we describe the laterally-varying characteristics of our upper mantle anisotropic

model SEMum. We analyze the model in the spatial (map) as well as the wavenumber

domain, and consider separately the Voigt average shear velocity component and variations

of radial anisotropy ξ .

5.2 Isotropic velocity variations

Figure 5.3 shows the isotropic shear wave-speed variations of SEMum with respect to

the average velocity at each depth. The model confirms the long-wavelength upper man-

tle structures imaged previously with approximate techniques. The most prominent slow

anomalies underly the mid ocean ridge (MOR) system down to a depth of less than 200

km. This confirms the findings of Zhang and Tanimoto (1992) but is inconsistent with

the study of Su et al. (1992). The width of the low velocity zones associated with all the

MORs widen with depth in the upper 150 km, though the widening is far greater beneath

the faster-spreading East Pacific Rise system than it is under more slowly spreading Mid-

Atlantic Ridge.

The back-arcs of all major ocean-ocean convergent boundaries are also characterized by

slow velocities in the uppermost 200 km, though their signature is considerably weaker

than that of the MORs. The back-arc of the Marianas subduction zone shows the most

anomalously slow velocities at shallower depths while the low velocities associated with
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back-arc spreading in the Tonga-Kermadec subduction zone increase in amplitude with

depth and become dominant at 180 km. In contrast, subduction beneath South America

shows no clear signature of a slow mantle wedge.

Finally, a number of localized low velocity features not clearly resolved in previous global

shear wave-speed models can be see in the continents. At a depth of 70 km, a continuous

band of low velocities can be seen running from the Tibetan plateau in the east, through

the Hindu Kush, the Zagros Mountains, and terminating on the west beyond the Anatolian

Plateau. At similar depths, we also image a low velocity channel running from the St.

Helena hotspot underneath the Cameroon Volcanic Line and terminating in a broader low

velocity zone underlying the Hoggar, Tibesti and Darfur hotpots. Finally, we find that the

low velocities associated with Red Sea / East Africa rifting extend northward all the way to

the Anatolian collision zone between 100-200 km depth.

Large-scale fast anomalies in the uppermost 200 km can be interpreted as signatures of

either continental cratons and platforms or thickening oceanic lithosphere. Away from

mid-ocean ridges, the ocean basins appear as seismically fast anomalies in the upper 100

km, with faster velocities persisting to greater depths with increasing age, consistent with

cooling-induced lithospheric thickening (see, for example Shapiro and Ritzwoller, 2002).

Seismically fast keels beneath stable cratonic regions were apparent in global tomographic

models a quarter century ago (e.g. Woodhouse and Dziewonski, 1984), and remain one

of the most prominent features of our tomographic model. Indeed, the biggest difference
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between our model and other recent global tomographic studies is that the amplitude of

the fast anomalies we observe beneath cratons is larger: up to 9% faster at 125 km depth.

Despite their stronger amplitudes, however, we find that the signature of the cratonic keels

weakens considerably below 200 km and disappears altogether around 250 km depth. This

is consistent with the findings of Gung et al. (2003) and models based on heatflow mea-

surements (e.g. Artemieva, 2006).

The spectral character of the velocity anomalies in the upper 200 km is shown in the left

panel of Figure 5.4. In this depth range, the power peaks at degree 5, corresponding

to the signature of the continent-ocean function, and falling off rapidly past degree 6 or

7. This confirms that the red spectrum of mantle heterogeneities discovered by (Su and

Dziewonski, 1991) is a robust feature of the Earth and not an artifact due to the use of

approximate forward modeling techniques. Power, including that at degree 5, decreases

rapidly at depths below 200 km, consistent with the disappearance of the seismically fast

continental keels and slow MORs.

Seismic structure in the 250-400 km depth range is weaker in amplitude has a decidedly

whiter spectral character than more shallow structure. It is also uncorrelated with overlying

structure, as can be seen in the radial correlation function in panel A of Figure 5.5. The most

prominent fast anomalies appear to be associated with subduction of the Nasca slab beneath

South America, the Australian-Indian plate beneath Java, and the Pacific plate beneath the

Aleutians, Kuriles and Japan. Fast anomalies are also seen beneath Western Africa, though
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they are rather weak and more diffuse than the overlying signature of the West African

craton. Finally, fast anomalies are present in a few locations beneath the ridges encircling

Antarctica, with the most prominent one being associated with the Australian-Antarctic

discordance. In this depth range, strong (∼ -3.5%) low velocities appear to concentrate in

two regions: one centered in the south-central Pacific in the triangle formed by the Tahiti,

Macdonald and Samoa hotspots and another centered beneath the Tanzanian segment of

the East African Rift. Weaker anomalies are generally seen beneath the Pacific, and, to a

lesser extent, the Indian ocean.

Fast velocity anomalies within the transition zone are dominated by the signature of sub-

duction in the Western Pacific. These form a fast band running from Kamchatka in the

northeast, over to Java in the west and beneath Fiji in the south-west. Additional strong fast

velocities are seen beneath South America, associated with the subduction of the Nasca

slab, and beneath the North American Cordillera, where they are likely to be associated

with subduction of the Farallon slab. We image prominent slow anomalies in four broad

locations of the transition zone. The first of these may be a continuation of the slow

anomaly centered between Samoa and Tahiti. The second is a slow anomaly eastward

of the Marianas/Japan/Kurile trenches, while a third stretches along the western margin of

the Sumatra-Andaman/Java trench system. The fourth slow anomaly can be seen beneath

the northwestern Atlantic abutting the North American shelf.

In the wavenumber domain, the combined signature of the seismic anomalies within the
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transition zone presents itself as an increase in power at degrees 4-8 (see Figure 5.4), which

is different from the dominantly degree 2 character of the anomalies inferred by Kustowski

et al., 2008. This difference may be due to the fact that our dataset does not include body

waves at frequencies shorter than 60 sec, which may make it difficult to retrieve the ampli-

tude of the fast, subduction-related anomalies in the Western Pacific.

5.3 Depth to the Lithosphere-Asthenosphere Boundary

The recent study of compressional-to-shear (Ps) conversions beneath a globally distributed

set of stations carried out by Rychert and Shearer (2009), has reignited a long-standing

debate concerning the thickness of the lithosphere beneath continents (see Romanowicz,

2009). Ps receiver function techniques (Vinnik, 1977) are capable of detecting the depth

and sign of sharp velocity contrasts beneath seismic stations. Rychert and Shearer applied

the technique to a global dataset with the goal of identifying velocity-decreases with depth,

which are thought to represent the boundary between the seismically fast lithosphere and

slower asthenosphere (lithosphere-asthenosphere bounday: LAB). They found little varia-

tion in the depth of a discontinuity they associated with the LAB between cratonic regions

(∼ 95 km) and oceanic islands (∼ 70 km). Beneath the oceans, these estimates of LAB

depth are in agreement with other studies (Kawakatsu et al., 2009), and falsify the claims of

McKenzie and Priestley (2008) that the LAB is undetectable with receiver-function meth-
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ods. However, beneath coninents, their observation appears to conflict with the images of

seismically fast keels extending beneath the cratons to a depth of at least ∼ 200 km (see,

e.g. Gung et al., 2003).

Even when interpreted from global shear wave tomographic models, very different maps

of LAB depth can be obtained when different available seismic models are used. Gung

et al., 2003 pointed out that the tomographic models could be separated into distinct cate-

gories, with those derived from vertically-polarized shear waves showing cratonic keels to

extend to shallower depths ∼200 km than models including horizontally-polarized waves.

Based on this difference and maps of variations of radial anisotropy that showed regions of

VSH >VSV beneath cratons, Gung et al. (2003) argued that the LAB beneath cratons was

likely to be in the ∼200-250 km range, and that the deep tectosphere proposed by Jordan,

1978 does not extend down to 400 km. This agrees with arguments put forth by Ricard

et al., 1996 on the basis of the ability of the 3SMAC model to predict seismic data.

Resolution tests show that our model of variations of isotropic shear wave-speed is not

biased by anisotropic structure, making it suitable for determining LAB depth without con-

tamination related to the influence of anisotropy. A number of methods have been used to

estimate LAB depth from tomographic models. Weeraratne et al. (2003) chose the depth

of the largest negative gradient of velocity with depth as a proxy for the location of the

LAB, while Artemieva (2009) and Conrad and Lithgow-Bertelloni (2006) associated the

LAB with the 2% fast isosurface in recent tomographic models. Pasyanos (2009) inverted



130

group velocity dispersion data directly for radial profiles of velocity with a variable depth

to LAB. Other studies have used theoretical or empiricial relationships relating seismic

velocity to pressure and temperature, and then extrapolated conductive profiles within the

lithosphere to the depth at which the intersect the mantle adiabat (Priestley and McKenzie,

2006), which depth is then taken to be the LAB. Finally, changes in the direction of az-

imuthal anisotropy have been associated with the base of the cratonic lithosphere beneath

North America (Marone and Romanowicz, 2007) and Africa (Sebai et al., 2006).

We choose the simple, gradient-based method of Weeraratne et al. (2003), since it does not

rely on the arbitrary choice of a special "LAB" velocity anomaly threshold. Furthermore,

associating the LAB with the region of the most negative velocity gradient is a reasonable

approach for identifying a velocity jump in a smoothly parameterized model, and is not

subject to the either the uncertainties associated with relations between shear wave-speed

and temperature/composition or the extrapolation of conductive thermal profiles through

the lower crust, whose abundances of radiogenic isotopes is poorly known. Figure 5.6

shows the inferred LAB depth obtained by extracting the absolute isotropic shear wave-

speed profile at each point on the Earth, and finding the depth at which the gradient of

velocity is most negative, with the constraint that this depth fall between 50 and 300 km

depth.

Figure 5.6 shows a strongly bimodal distribution of LAB depths. Beneath the oceans, litho-

spheric thickness ranges from 50 up to 80 km, with regions away from MORs showing



131

thicker lithosphere. Beneath continents, a much greater range of lithospheric thicknesses

is apparent. Shallowest LAB (∼ 80 km) is found beneath north and east Africa, western

Europe, far eastern Asia and Australia. Somewhat deeper (∼ 100 km) LAB can be seen

beneath most of central North and South America, in central Siberia, Iran, Iraq and sta-

ble Saudi Arabia, as well as in western and southern Africa. In these continental regions, it

may not be appropriate to associate the LAB with the depth of the most negative gradient of

velocity, since negative gradients exist at both ∼ 100 and 250 km depth (see discussion of

regional profiles). The real LAB, therefore, is likely to be at 250 km depth, while the neg-

ative gradient of velocity at ∼ 100 km may be the origin of the signal observed by Rychert

and Shearer (2009) that caused them to mistakenly interpret their results as evidence for

anomalously thin lithosphere beneath stable continents (see Romanowicz, 2009).

Thick lithosphere is found beneath Quebec, eastern North America, the Sao Francisco

craton, the eastern portion of the East Siberian craton, the western, archean portion of

the Australian craton, and in the broad region of continental collision between India and

Asia. Thickest lithospheric regions are found beneath northern North America, northern

Greenland, the East European craton, the western portion of the East Siberian craton, the

West African, Congo and northern Kalahari cratons, the Amazonian and Australian cratons,

as well as the craton beneath Eastern Australia.

Our map of LAB depth is broadly consistent with the seismologically-based estimates of

Pasyanos (2009), McKenzie and Priestley (2008) and Figure 5b,c of Artemieva (2009).
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However, a detailed examination of our inferred LAB depths shows a number of important

differences with the results of Priestley and McKenzie (2006). The most important of these

differences is that Priestley and McKenzie (2006) find that the regions of thick lithosphere

associated with individual cratons form continuous, very large provinces of very thick litho-

sphere, which they term "cores". In particular, the Congo, Kalahari and Tanzanian cratons

of Africa appear to be one "core", and the East European craton and the East Siberian cra-

ton form an enormous "North Eurasian core". Our map of inferred LAB topography shows

that these cratons are in fact distinct even at depth, and that they are separate by regions of

much thinner (∼ 100-125 km thick) lithosphere.

These results also agree with the heatflow-based TC1 model (Artemieva, 2006), which

shows thick lithosphere in all the regions where we infer a deep LAB, except for beneath

Mexico and the Celebes Sea, where our inferences are very likely corrupted by the signature

of active subduction in these regions. The most striking difference between our inferred

map of the LAB is that the deep cratonic keels are of much larger scale than those present

in TC1.

5.4 Variations of radial anisotropy

Figure 5.3 shows the variations of the anisotropic parameter ξ with respect to isotropy at a

variety of depths. Regions where ξ > 1.0 (shown in blue hues) are ones in which horizon-
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tally polarized waves travel more rapidly than vertically polarized ones, i.e. VSH >VSV , and

ones with ξ < 1.0 (shown in orange hues) have VSV >VSH . If this seismic anisotropy is due

to lattice preferred orientation (LPO) of olivine crystals induced by flow-driven deforma-

tion, then blue regions of Figure 5.3 are ones in which the direction of the time-integrated

longest finite strain ellipsoid is in the horizontal plane (e.g. see Ribe, 1989, 1992). How-

ever, because the dominant slip systems that give rise to LPO are themselves sensitive to

temperature, pressure, strain-rate and volatile-content, a variety of slip systems might be

operative in the upper mantle, complicating the interpretation of anisotropy (see Karato

et al., 2008).

Before proceeding to describe and discuss the spatial characteristics of variations in ξ , it

is interesting to consider the spectral character of the model and compare it with that of

the isotropic velocity variations. The right panel of Figure 5.4 shows the power of the

anisotropic model as a function of angular degree, and colored on a logarithmic scale. At

a depth of 100 km, the spectrum is rather white, and is markedly different from the red

spectrum of isotropic velocity variations. Below about 125 km, almost the entire power of

the anisotropic model at other depths is contained in degrees 2-6, even though the model

parameterization allows for structure up to degree 24. Finally, very little power is present

at depths greater than 300 km, confirming previous results of Panning and Romanowicz

(2006) and Kustowski et al. (2008) that lateral variations of ξ are not strongly required by

the data at these depths.
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It is immediately apparent that the uppermost ∼ 200 km are characterized by VSH >VSV ,

as seen in the radial profiles of ξ , presented earlier. This is consistent with the dominantly

horizontal deformation induced by the motion of lithospheric plates over the asthenosphere.

Indeed, our model does not show any large regions with VSV >VSH until below 200 km

depth. That is not to say that the model in the upper 200 km is featureless. In fact, substan-

tial differences in the anisotropic signature of continents and oceans are clearly present in

this depth range.

First, continental regions appear to have larger values of ξ in the uppermost 100 km than

do oceanic regions, which are essentially isotropic away from the MORs. This observation

is complicated somewhat by our smooth parameterization of crustal structure, which can

only match the seismic response to that of a layered crust with the introduction of spurious

anisotropy. However, we believe that this effect is not dominant at a depth of 100 km. A

possible explanation is that since seismic anisotropy depends not on the present but rather

the time-integrated finite strain, the strength of anisotropy in the shallow continental litho-

sphere is the result of it having been subjected to more deformation over its considerably

older age than has the oceanic lithosphere.

The second feature of interest that can be seen in the 70 km map of Figure 5.3 is that

the mantle wedges of the Western Pacific have decidedly greater values of ξ than do the

surrounding oceans. This is also the case in the S362ANI model of Kustowski et al. (2008).

It is not immediately apparent why the mantle wedges should have ξ larger than 1.0 when
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the opposite sense of anisotropy is predicted by Becker et al. (2007) based on A-type slip

in olivine (alignment of fast axis with the direction of flow). This prediction is based on the

preponderance of vertical deformation associated with subduction. One possibility is that

the A-type fabric might not be dominant in subduction zones, and instead the B-type or

C-type fabrics dominate, aligning the fast axis perpendicular to the vertical flow. This may

be a plausible explanation, since mantle wedges have high water content (e.g. Hirschmann,

2006) favoring B- and C-type fabric formation (Katayama and Karato (2006)).

Mid ocean ridges at depths shallower than 100 km appear to have somewhat larger ξ values

than the ocean basins, though their signature is less strong than that associated with the

subduction zones. This character of MORs is also seen in S362ANI, and is also seen in the

modeling of Becker et al. (2007). It results from A-type olivine fabric formation within a

dominantly horizontal flow induced in the vicinity of spreading centers by the motion of

the overriding oceanic lithosphere. However, it is surprising that the strength of the MOR

ξ anomalies appears to be comparable across all the MORs, regardless of the spreading

rate, which is predicted to be strongly correlated with ξ by Becker et al. (2007).

Finally, a band of anomalously high ξ and trending northwest-southeast across central

Pacific can be seen in the 70 km map of Figure 5.3. We do not have any ready explanation

for this feature, and note that it has not been previously reported. However, we note that it

may be associated with the strong ξ > 1.07 anomaly centered beneath Hawai’i, first imaged

by Ekstrom and Dziewonski (1998) and seen in the models of both Kustowski et al. (2008)
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and Panning and Romanowicz (2006).

At 125 km, the ocean basins become the locus of highest values of ξ , while the conti-

nents appear more isotropic than at shallower depths. Greatest anisotropy is seen under the

Pacific, centered beneath Hawai’i. However, we observe a second maximum beneath the

Indian ocean, centered south of India on the equator. This strong VSH >VSV anomaly is

clearly imaged by Gung et al. (2003), but is less strong in both Kustowski et al. (2008) and

Panning and Romanowicz (2006). At this depth, the MORs and subduction zones are not

easily distinguished, and are characterized by ξ values in the 1.04-1.07 range.

By 180 km, the continents appear to be nearly radially isotropic, while the ξ values under-

neath the oceans increase further, reaching a maximum of ∼ 1.12 beneath both the Pacific

and the Indian Ocean, and somewhat lower values beneath the Atlantic Ocean. The most

notable feature of the variations in radial anisotropy in this depth range is the emergence of

three nearly isotropic regions: one beneath the backarc associated with subduction beneath

Tonga-Kermadec, a second one near the western edge of the Southeast Indian Ridge, and

a third one in the general vicinity of the triple junction among the East Pacific Rise, the

Pacific-Antarctic Ridge, and the Juan Fernández Ridge.

These three isotropic regions become more anomalous with increasing depth and by 250

km show clear evidence of ξ < 1.0. Other regions with ξ < 1.0 can also be seen at a depth

of 250 km: a band running along the western margin of both North and South America

from the Yukon in the north to central Chile in the south, and another, east-west trend-
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ing band stretching from Iran in the west through China, Mongolia and Manchuria in the

east. All of these regions appear to be associated with either spreading or subduction, and

it is likely that their anisotropic signature is indicative of the prevalence of vertical flow.

This can be seen in another way by looking at the cross-correlation between the isotropic

and anisotropic structure shown in panel C of Figure 5.5: anisotropic structure below 200

km depth is moderately-well correlated with seismic structure in the upper 200 km, be-

cause the regions of anomalous VSV >VSH anisotropy are preferentially located in regions

associated with either spreading centers or subduction/convergence zones which are char-

acterized by shallow low isotropic velocity anomalies. Beneath the MORs, we expect this

flow to be upward, while it is reasonable to expect flow to be downward in regions of con-

vergence/subduction. We note that these regions are broadly consistent with the models

of Gung et al. (2003) and Panning and Romanowicz (2006), and to a lesser extent that of

Kustowski et al. (2008).

At this depth, the character of anisotropy beneath the oceans also changes substantially;

whereas the mantle beneath Hawai’i hosted largest ξ anomalies at 150 km, now it is con-

spicuously isotropic, separating broad swaths with larger ξ values to the east and the west.

Furthermore, large values of ξ appear to persist to greater depth beneath the Indian Ocean

and the western margin of the North Atlantic, than they do beneath the Pacific Ocean. The

substantial differences in the ξ model between the upper 200 km and deeper structure is

clearly seen in the radial correlation functions shown in panel B of Figure 5.5. No substan-

tial lateral variations of radial anisotropy are found below ∼ 300 km.
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5.5 Comparison with regional models

5.5.1 Africa

Africa is the site of four main cratons, several hotspots and active continental rifting. As

such, the upper-mantle structure beneath Africa has been re-examined in the last few years

by a number of continental-scale tomographic studies (e.g. Priestley et al., 2008; Pasyanos

and Nyblade, 2007; Sebai et al., 2006). We compare our findings with inferences made

in these studies and focus our attention on three salient tomographic features: 1. the dif-

ferences in depth extent of seismically fast keels that underly cratons; 2. the depth extent

and morphology of seismically slow anomalies beneath the East African Rift; and 3. the

relationship between upper mantle velocity and Africa’s hotspots.

Even though they were first imaged a quarter century ago (Woodhouse and Dziewonski,

1984), controversy still brews concerning the depth extent of the seismically fast keels

beneath the West African, Congo, Tanzanian and Kalahari cratons. Based on waveform

inversion of long period Rayleigh waves, Priestley et al. (2008) argue that the fast roots

extend to depths of 225-250 km beneath all but the Kalahari craton, below which they

retrieve fast anomalies only down to ∼170 km. This finding is in conflict with the study

of Sebai et al. (2007), which found fast anomalies beneath the Tanzanian craton to be of

anomalously shallow extent (∼ 180 km), in agreement with earlier findings by Weeraratne

et al. (2003) which study was focused on Tanzania. Finally, Pasyanos et al. (2007) use
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a very large dataset of group velocity dispersion measurements to image both crustal and

upper mantle structure beneath Africa; they find that the Congo craton is the anomalous

one, with a weak signature in the upper mantle.

Figure 5.7 shows map views of our model at 6 depths. At 150 km depth, all four African

cratons are clearly seen to be underlain by fast anomalies. However, by 200 km, the signa-

ture of the Tanzanian craton is gone, and the fastest anomalies have shifted northeastward

into Mozambique. This is consistent with the findings of Pasyanos et al. (2007) and Priest-

ley et al. (2008) concerning the Kalahari craton, and confirms the shallow extent of the

Tanzanian craton, as found by Weeraratne et al. (2003) and later Sebai et al. (2007). How-

ever, contrary to the findings of Pasyanos et al. (2007), we see a robust signature of the

Congo craton extending down to ∼ 220 km.

The most pronounced slow anomalies shown in Figure 5.7 are associated with the Red

Sea and the East African Rift. At depths shallower than 150 km, these trend northwest-

southeast and are concentrated beneath the Red Sea and the Ethiopian segment of the

East African Rift. Starting at ∼ 200 km, however, they assume a north-south trend and

move progressively southward with depth, extending into Tanzania, where Weeraratne et

al. (2003) found evidence for the presence of a mantle plume. This behavior is also seen by

Sebai et al. (2007) and Pasyanos et al. (2007), but is not present in the model of Priestley

et al. (2008), where the southern East African Rift is underlain by fast velocities at depths

below 200 km. In the transition zone, we find slowest velocities beneath Tanzania, where
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they assume a circular morphology consistent with the presence of a deep plume.

We observe secondary slow anomalies trending from St. Helena hotspot, through Mt.

Cameroon and the Tibesti hotspot. These slow anomalies separate the fast keels of the

West African and Congo cratons, and are also present beneath the Darfur and Hoggar hot

spots. The upper mantle signature of the African hotspots is present in both the model of

Priestley et al. (2008) and that of Pasyanos et al. (2007), but is absent in the tomography

of Sebai et al. (2007).

5.5.2 South America

The South American continent comprises two main cratons: the Amazonian craton which

stretches from southeastern Venezuela down to northeastern Bolivia, and the Sao Francisco

craton in eastern Brazil. The Amazonian craton is itself separated by Amazonian rifting

into a northern Guyana and southern Guapore shields. Further south, the Parana basin is

the site of one of a major Large Igneous Provinces (LIP). Active subduction of the Nasca

plate dominates the tectonics of the western margin of the continent forming the Andean

Cordillera. The strike of this subduction changes dramatically between Chile and Peru,

and is associated with a change in the morphology of the Wadati-Benioff zone (see Lekic,

2004).

Figure 5.8 shows map views of our model at 6 depths. In the uppermost mantle, we find
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slowest velocities beneath the East Pacific Rise, and along the Carnegie and Cocos Ridges,

which meet at the Galapagos hot spot. Other slow velocities are observed in the vicinity

of the San Felix and Juan Fernandez hotspots, though these cease to be anomalously slow

between 150 and 200 km depth. The Mid Atlantic Ridge appears to be characterized by

moderately slow velocities to a depth of less than 200 km. At 75 km depth, all of South

America, except the Altiplano, is underlain by seismically fast anomalies, which, by 150

km depth appear to be centered beneath the Amazonian and Sao Francisco cratons. Un-

like the regional study of Heintz et al. (2005), we do not image a less fast band along

the Amazonian rift separating the Guyana and Guapore shields. The seismic signature of

both cratonic keels narrows and shifts to the East with increasing depth, and disappears

altogether deeper than ∼ 200 km.

We image the Nasca slab at 150 km depth, though at a depth of 200 km one of the most

prominent features is not the slab itself, but, rather, a slow anomaly centered immediately

to the east of the bend in the trench. This slow anomaly is also present in the model of

Heintz et al. (2005), and might obscure the fast anomalies associated with the slab. At

greater depths, this anomaly spreads to the southeast, where it underlies the Parana LIP.

Heintz et al. (2005) also observe slow velocities, though in a more restricted region, that

they interpret at a mantle signature of the Parana LIP. In the transition zone, a broad, fast,

north-south oriented feature is seen, probably due to the presence of the Nasca slab; deep

seismicity is seen throughout the region covered by the fast anomaly. At depths below 500

km, a slow anomaly is present beneath the eastern edge of the Parana LIP, in agreement
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with P and S-wave regional traveltime tomography of Schimmel et al. (2003).

5.5.3 North America

North American upper mantle has been mapped by a number of recent surface wave studies

(Godey et al., 2004; Marone et al., 2007; Nettles and Dziewoński, 2008; Bedle and van der

Lee, 2009; Yuan and Romanowicz, in prep.). Figure 5.9 shows maps of the isotropic shear

wave-speed variations of SEMum. The most prominent seismic feature in the 200 km

beneath North America, and one that is imaged by all of the recent tomographic studies, is

the sharp contrast between the tectonically active and seismically slow western region and

the seismically fast, stable continental platform to the east. However, the details of velocity

variations within each region differ between models.

At 75 km, our model shows two regions of especially fast velocities beneath the stable

continent: a northwestern one in the vicinity of the Slave craton, and a larger, faster one

centered on the southern shore of Hudson Bay in the location of the Superior craton. We

image a third craton beneath northwest Greenland. The craton locations are broadly consis-

tent with the morphology of fast anomalies imaged in the aforementioned regional studies.

By 150 km, the fastest anomalies appear to merge, shifting somewhat northward, directly

beneath Hudson Bay. At 200 km, the fastest velocities are seen in a circular region centered

on the western shore of Hudson Bay, and persist until ∼ 250 km before becoming indistin-
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guishable from ambient mantle. The Greenland craton loses its fast signature between 200

and 250 km depth.

A number of smaller-scale features can be seen in the seismically slow western portion

of the continent. The most striking of these is a less-slow band at 75 km which stretches

from the California coast toward the Pacific. We see a sharp drop of velocities across the

Mendocino Transform Fault that separates the Pacific plate from the Juan the Fuca plate

to the north. The southern edge of this band occurs at the tip of active rifting occurring in

northern Gulf of California. Because this feature appears to be confined to the strike-slip

San Andreas Fault plate boundary, and its signature disappears below 150 km depth, we

interpret this feature as the manifestation of colder oceanic lithosphere that is no longer

subject to active spreading occurring to the north and the south.

In the east, slow velocities are seen in a narrow band around the Mid Atlantic Ridge. Fi-

nally, a small, circular low velocity anomaly is imaged in the vicinity of Bermuda. This

anomaly may be associated with a weak, northwest-southeast trending band of slow anoma-

lies that splits the domain of fast anomalies running from northern Quebec to south of the

Great Lakes, before petering out near Lake Erie. Though this feature appears to persist

until a depth of 200 km, it is not clearly seen in any of the regional models.

The slow anomalies seen beneath the Basin and Range disappear between 200 and 250km,

which is somewhat shallower than the signature of the slow anomalies further to the west

and south. Nevertheless, our model shows that western North America is clearly noma-
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lously slow to a depth of 200-250 km, which is also found by Nettles and Dziewoński,

2008 and Bedle and van der Lee, 2009 but is opposite to the maps of Godey et al., 2004.

In the transition zone, we image a northwest-southeast trending fast anomaly that stretches

from the Cascadia subduction zone down to the Gulf of Mexico. We interpret this to be a

signature of the Farallon slab. The location of this fast anomaly is roughly consistent with

the images of the slab-related fast anomalies imaged using the finite-frequency, teleseismic

P-wave traveltime model of Sigloch et al., 2008. Two strong slow anomalies are also seen

in this depth range: one beneath the central segment of the East Coast of North Amer-

ica, stretching from Massachusetts in the north, down to southern Virginia, and a second,

smaller anomaly beneath western/central California.

5.5.4 Australia

A favorable distribution of earthquakes that occur at a large range of depths along the

Tonga-Kermadec and Vanuatu subduction zones to the east and the Solomon Islands, Papua

New Guinea, Banda Sea and Java subduction zones to the north, has aided the develop-

ment of tomographic models of the mantle structure beneath Australia. We will compare

our inferred velocity structure beneath Australia with three recent surface-wave based to-

mographic studies of the continent’s upper mantle structure (Simons et al., 2002; Fishwick

et al., 2005; Fichtner et al., 2009b). All three of these studies use only vertical component
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seismograms, and are thus models of vertically-polarized shear wave-speed variations. The

model of Fichtner et al., 2009b (henceforth FAU) is, like our model, developed using the

spectral element method, though there are a number of important differences between our

approaches: 1. we use 3 component data, whereas FAU uses only vertical component seis-

mograms; 2. we initialize our inversion with 1D model, whereas FAU start from a 3D

model that shares much of the features of their final model; 3. we use approximate finite

frequency kernels calculated using NACT as opposed to the adjoint kernels used by FAU; 4.

our misfit function is a waveform difference calculated point-by-point in the time domain,

whereas FAU use a more complicated technique that calculates time-frequency misfits.

Figure 5.10 shows map views of our model at a variety of depths. At 75 km depth, we

see very low velocities associated with spreading occurring along the Pacific-Antarctic

and Southeast Indian Ridges, as well as the Tonga-Kermadec back-arc. All of Australia

is characterized by faster-than-average velocities, except the easternmost margin and the

south-east region near Tasmania. Simons et al., 2002 (henceforth SAU) and Fishwick et al.,

2005 (henceforth FSW) both find low velocities beneath Tasmania at this depth, though

FAU does not. The fast anomalies in the bulk of the continent show a less-fast central

region, flanked by fast anomalies to the north, east and west (but not south), consistent with

findings of FAU and FSW but not SAU, whose model appears more or less-uniformly fast

in the entire region west of the Tasman Line. FSW argue that these lower velocities in the

central portion of Australia are confirmed by body wave data.
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At 150 km, central and western Australia (west of the Tasman Line) is seismically fast,

with the fastest velocities concentrated in an east-west elongated region. This fast anomaly

has a similar shape and amplitude in all of the regional studies. At this depth, we also

start to image the subducting slabs beneath Java, the Banda Sea and Vanuatu, though the

Tonga slab is not seen to be anomalously fast. This may be due to the strength of the

low velocities associated with back-arc spreading, whose amplitude increases with depth,

peaking between ∼ 150-200 km depth. Of the three regional studies, only the model of

FAU extends sufficiently far east to cover the Vanuatu subduction zone; however, they do

not image any increased velocities corresponding to subducting slabs. The slow anomalies

seen in the MORs south of Australia cease to be continuous in this depth range. In fact,

by 200 km, only a narrow sliver of low velocities persists along the northern edge of the

spreading center.

By 200 km depth, the fast anomalies beneath central Australia have somewhat shrunk in

their eastern reach, and only the central region appears anomalously fast at∼250 km depth.

All three regional models find fastest anomalies at 250 km depth to be in north-central

Australia, consistent with the location of the fast anomaly present in our model. However,

we are unable to resolve fast velocities in the southwestern corner of Australia, which

are especially prominent in SAU and FSW, and somewhat weaker in FAU; this may be

due to contamination by small-scale variations of radial anisotropy. At 250 km, two fast

anomalies appear, one at each end of the Australian-Antarctic discordance, which is a site

of unusual topography, unique geochemistry Christie et al. (1998) and anomalous seismic
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upper mantle structure (Forsyth et al., 1987; Ritzwoller et al., 2003). While at 250 km,

the eastern anomaly appears to be stronger than the western one, the western one becomes

dominant by 350 km depth, and both disappear in the transition zone.

The greatest differences among the regional models and the results of our study are apparent

at depths below 300 km. Aside from the fast anomalies associated with the Australian-

Antarctic discordance, the only prominent fast velocities in our model at these depths are

the images of the subducting slabs beneath Java, Banda Sea and Papua New Guinea. Aside

from a strong low velocity anomaly beneath the southern tip of the southern island of

New Zeland, the map is rather bland. This is broadly consistent with the results of FSW.

However, FAU finds that almost the entire region is seismically fast at these depths, and

interprets these fast anomalies as the northward extension of North Australian craton! Our

model presents no evidence that would warrant such a conclusion.

5.5.5 Eurasia

Eurasia is the site of active continental collision (Tibet and the Mediterranean), active rift-

ing (Lake Baikal), and its southern and eastern margin host significant shallow and deep

seismicity. Nevertheless, continent-scale shear wave-speed tomography is made difficult

by the fact that most of the continental interior is aseismic, and seismic station coverage is

sparse in Russia and the Central Asian republics. However, when a global dataset is used,
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surface wave and overtone coverage across Asia is excellent, allowing for higher-resolution

parameterization to be used within Asia (as done by Kustowski et al., 2008), or for smaller-

scale features to be robustly imaged within a more-densely parameterized global model

(as is the case in our study). Furthermore, the last decade saw the development of a num-

ber of large-scale regional studies of vertically-polarized shear wave-speed variations (e.g.

Lebedev and Nolet, 2003; Friederich, 2003; Priestley et al., 2006; Boschi et al., 2004).

Figure 5.12 shows map views of our model at a variety of depths. The structure of the

uppermost mantle at 75 km depth beneath the northern part of the continent shows a large

domain of fast velocities stretching from eastern Siberia all the way to the western margin

of the East European craton. A band of somewhat slow ∼ -2% anomalies that extend from

Tibet in the east to the Anatolian Convergence Zone in the west separate the fast velocities

in the north from smaller but prominent fast anomalies that can be seen beneath the stable

part of Saudi Arabia and India. This structure is clearly seen in the model of Kustowski

et al. (2008), and the slow anomalies beneath Anatolia are seen in the model of Boschi

et al. (2004). Small amplitude (∼ 2%) fast anomalies are imaged beneath the Tarim and

Sichuan basins, bounding the low velocities of Tibet to the north and south, respectively.

These small features are also imaged by Priestley et al. (2006) and Friederich (2003). Like

Kustowski et al. (2008) and Priestley et al. (2006), we also image a prominent slow anomaly

beneath the Altai Mountains of Mongolia at this depth, though this anomaly is not clearly

seen in the model of Friederich (2003). Slow velocities are also seen in the mantle wedges

of all the subduction zones in the east of the continent.
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At a depth of 150 km, Tibet is seen to be underlain by very fast velocities, which is con-

sistent with all the aforementioned studies. Anomalously fast mantle is once again imaged

beneath the Tarim and Sichuan basins, India, and Arabia. In the north, the fast anomalies

are clearly strongest beneath the East European and Siberian cratons, and are separated

by a band of somewhat less fast velocities. This clear separation of the two largest Asian

cratons is not obvious in either the Priestley or Kustowski tomography. The slow veloc-

ities that are present beneath the Altai Mountains have shifted northeastward with depth,

so that they are now centered to the east of Lake Baikal. This is seen in Kustowski and

Priestley tomography, but is a bit west of the structure imaged by Friederich, who found

slowest velocities at this depth to be precisely beneath Lake Baikal. In the west, a notable,

fast anomaly appears to be associated with the Hellenic Arc, consistent with the results of

Boschi et al. (2004).

By 250 km depth, we see a weakening of seismic signature beneath all the cratons, with the

substantial fast anomalies only persisting beneath the East European Craton. Nevertheless,

smaller-amplitude fast anomalies are still seen beneath the Siberian and Arabian cratons,

though their shape is considerably altered: fragmented beneath Siberia and elongated in the

north-south direction under Arabia. Remarkably, the remaining small-scale fast anomalies

beneath Siberia are found at identical locations by Priestley et al. (2006). Fast velocities

are also seen beneath Tibet, in agreement with all the regional studies. Finally, the low

velocities to the west of Lake Baikal persist at this depth.
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The pattern of seismic anomalies changes drastically by 350 km depth. No signature of

fast cratonic keels is seen at this depth, and the most prominent structure is a broad zone of

fast velocities extending from the Himalayan front northward into central Siberia. Unlike

Kustowski et al. (2008), we do not image slow velocities in beneath Tibet at this depth.

Furthermore, unlike Friederich (2003), who trace anomalously low velocities beneath Lake

Baikal into the transition zone, we cease to resolve a clear low velocity zone associated with

the Baikal by 350 km depth.

Within the transition zone, we image a band of fast velocities stretching from Italy into

Iran, which was seen by Kustowski et al. (2008), and interpreted to be associated with

cold, subducted material, which also elevated the 400 km discontinuity. In the east, fast

velocities are seen along the entire continental margin, which is probably a signature of

subduction of oceanic lithosphere. These fast velocity anomalies persist to the base of the

transition. In this depth range, low velocities appear to underly most of central and western

Russia, as well as southern India and Arabia. This is broadly consistent with the transition

zone images of Kustowski and Friederich, though significant differences in details can be

seen.
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5.6 A regionalized model

A number of regionalized models have been developed over the years (Jordan, 1981; Nataf

and Ricard, 1996; Gudmundsson and Sambridge, 1998) which divide the surface into

provinces based on surface tectonics: whether they are part of the continent or ocean, their

age, and their level of volcanic and seismic activity. Because seismic structure was found

to correlate with surface expressions of tectonics (e.g. review by Romanowicz, 1991), the

seismic structure of the upper mantle could be inferred from geological and geophysical

observations made at the surface (e.g. Nataf and Ricard, 1996; Gudmundsson and Sam-

bridge, 1998). Part of the motivation for this work was that global tomographic models

of upper mantle velocity available ten years ago did not have amplitudes large enough to

be consistent with variations seen from local and regional studies (see Gudmundsson and

Sambridge, 1998). Thus, observations from the surface would be related to regional and

local studies of seismic structure and then extrapolated across the globe. Ricard et al., 1996

found that the 3SMAC upper mantle model was able to provide a good fit to observed Love

and Rayleigh phase velocities.

Here, we turn this reasoning on its head, and ask the question: Is our global tomographic

model sufficiently accurate to take advantage of correlations between tectonics and seis-

mic structure in order to improve our knowledge of tectonics. Indeed, surface observa-

tions of tectonics are themselves associated with inaccuracies. For example, inferences

on the location of cratons might be biased by surface observations if portions of the crys-
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talline basement is obscured by younger sediments. Similarly, creating a regionalized seis-

mic model from expressions of surface tectonics involves an extrapolation step in which

structures at the surface are interpreted as vertical extensions of deeper structure (and vice

versa); however, the actual architecture of a continental platform, for instance, might in-

volve non-vertical structures. By developing a tectonic regionalization based on a global

seismic tomographic model, we might be able to better understand tectonic processes by

which continents are put together and their relationship to surface geology, seismicity and

volcanism.

In order to do this, we begin by extracting the absolute isotropic shear velocity profile below

each point on the surface, sampled every 25 km in depth and 2 degrees laterally. Because

the uppermost 300 km is the site of largest seismic anomalies as well as most strongly

correlated with surface tectonics, we restrict the depth range of the velocity profiles to

be 50-300 km. Then, we calculate the euclidean distance between each pair of profiles.

Similar profiles are merged into clusters, and the distance between two clusters is taken

to be the greatest of all the pairwise distances between profiles within the clusters. The

maximum differences within a cluster are smaller than those between clusters. This is

continued until a desired number of clusters is obtained. We then map the locations of

each cluster of profiles on the surface, and compare our seismic regionalizations to surface

tectonics.

We start by allowing only two clusters (see top panel of Figure 5.13), which should allow
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us to identify which areas are the most different from a seismological viewpoint. What we

obtain is one cluster that covers ∼ 75% of the surface including all of the oceans as well as

what Jordan (1981) might term the "tectonic" continent, in which significant deformation,

seismicity and volcanism are present, such as northeastern Africa, the southern Europe, the

western portion of North America, or much of the areas underlying China and the vicinity

of the Baikal Rift. The average velocity profile within this cluster shows a pronounced low

velocity zone, with a velocity minimum of 4.35 km/s reached at a depth of 110 km. The

other cluster covers stable continental platforms, as well as the very oldest ocean in the

northwestern Pacific. Remarkably, it is characterized by two minima, one at 100-150 km

depth and another at ∼250 km depth.

Allowing for an additional cluster (second row of Figure 5.13) separates the continental

collision associated with Tibet from the rest of the continental profiles. The distinguishing

features of Tibet when compared to other continental regions are its thick crust, the slow

velocities seen beneath it down to ∼150 km depth, and high velocities between 150 and

250 km depth. These features can be seen in velocity profiles shown in Figure 5.13. The

addition of a fourth cluster separates the oceans into a young region associated with spread-

ing centers, and an older region further away from them. The difference in seismic velocity

profiles that distinguishes these two regions is the depth and minimum velocity associated

with the low velocity zone; younger oceanic lithosphere is underlain by asthenosphere that

has a minimum velocity of 4.25 km/s at 100 km, while the asthenosphere beneath older

oceanic lithosphere has minimum velocities of 4.4 km/s, which is reached in the 100-125
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km depth range.

This means that the difference between stable and tectonic active continental regions is

the strongest as far as mantle seismic structure is concerned, followed by the difference

between mantle underlying old and young oceanic lithosphere. Cratons are distinguished

from surrounding stable continental structures only by allowing the creation of a fifth clus-

ter. Finally, by allowing for a 6th cluster, we distinguish areas of anomalously low veloc-

ities beneath 150 km, which is the first cluster that is not related to surface tectonics in a

straightforward way.

We find that a regionalization based on 6 clusters is informative without being too cluttered.

In this regionalization, which is shown in Figure 5.14, we identify all the world’s major

cratonic areas, including smaller ones such as the Arabian, Sao Fernando and the Indian

cratons. These all belong to a single cluster (or region), which we denote CR1 and shown

in green in Figure 5.14. CR1 is characterized by the fast upper mantle seismic velocities of

∼4.7 km/s and is anomalously fast down to a depth of ∼ 250 km (see Figure 5.15). This

region is surrounded by a second region (CR2), which appears to comprise other stable

regions with similar, but ∼ 100 m/s slower velocity profiles. CR2, which is shown in

cyan in Figure 5.14, also includes the very oldest oceanic crust. Though CR2 also has

fast velocities extending to ∼200 km, no large negative gradient bounds it at the bottom,

which is why our gradient-based approach to determining the depth to the LAB did not find

CR2 to be associated with great lithospheric thicknesses. Both of these clusters have local
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velocity minima around a depth of 100-120 km, with small negative velocity gradients with

depth that peak at ∼100 km. These might be associated with the transition from chemical-

to thermal lithosphere (Lee et al., 2005), and might explain the observations of Rychert and

Shearer (2009) as proposed by Romanowicz (2009).

Three of the clusters are clearly associated with oceanic crust, though they are, on occasion,

found beneath continents. The slowest of these (OR1), shown in purple in Figure 5.14, is

found beneath the world’s MORs as well as the back-arcs of subduction zones. Beneath

continents, it is found in the Red Sea and the Ethiopian segment of the East African Rift,

the Cameroon Volcanic Line, the Anatolian Convergence Zone, to the southwest of the

Baikal Rift, western North America. The velocity profile beneath this region features a

very prominent low velocity zone a very similar shape to that found beneath the slowest

regions, but is ∼75 m/s on average faster at all depths. It features a prominent low velocity

zone with a minimum velocity of ∼4.25 km/s found at a depth of 100 km.

At the margins of the areas covered by this cluster, we find an interesting region (OR2),

shown in red in Figure 5.14. This region can be seen beneath the Arctic, beneath the Coral

and Tasman Seas, in a narrow region of central South America, west of the Baikal Rift,

as well as in northwest-southeast trending bands across the Indian and Pacific basins, one

of which passes in the vicinity of Hawai’i, and another one near the Samoan and Tahiti

hotspots. This region is characterized by higher velocities in the upper 100 km than seen

in OR, but velocities below 150 km that are ∼50 m/s slower than those belonging to OR1.
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A somewhat less-well pronounced low velocity zone appears to be associated with OR2,

and the slowest velocities of ∼4.35 km/s occur at 125 km, which is somewhat deeper than

in OR1. Thus, OR2 appears to be distinguished from OR1 by a faster asthenosphere and

anomalously low velocities at depth.

Though seen along the margins of CR2, the final oceanic region (OR3), can be most

strongly associated with old oceanic crust, and is shown in dark blue in Figure 5.14. Its

velocity profile falls near the middle between the cratonic profile of CR1 and the slow

velocities associated with OR1. It shows a weak low velocity zone, in which minimum

velocities of ∼4.43 km/s are observed between 90-125 km depth.

We wish to stress that a clustering based solely on similarities in profiles of absolute shear

wave-speed does a remarkable job of identifying Earth’s tectonic provinces. This is not

simply a different way of looking at the known correlations between upper mantle seismic

structure and surface tectonics. Instead, it demonstrates that seismic structure within a

tectonic setting is more similar to other structures in a similar tectonic setting - whether

they are geographically close or on a different continent - than it is to much less distant

locations that happen to belong to a different tectonic setting. Finally, this preliminary

work paves the way for interpreting the regional profiles in terms of thermal profiles and

chemical heterogeneity.



157

4400 4600 4800 5000 5200 5400 5600

100

150

200

250

300

350

400

450

500

550

600

650

De
pt

h 
(k

m
)

Vsiso

 

 

0.9 0.95 1 1.05 1.1

100

150

200

250

300

350

400

450

500

550

600

650

De
pt

h 
(k

m
)

! (VSH
2 /VSV

2 )
 

 
PREM
Starting
SEMum
REF

PREM
Starting
SEMum
REF

Figure 5.1: (left) Profiles of isotropic shear wave-speed in our starting model, in SEMum,
PREM and REF. (right) Profiles of ξ .
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Figure 5.2: Predictions of toroidal (left column) and spheroidal (right column) eigenfre-
quencies of free oscillation for the fundamental branch (top), and first through fourth over-
tones. The y-axis denotes percent difference between observed frequencies and predictions
of PREM (black) and SEMum1D (gray).
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Figure 5.3: (left) Maps of the Voigt average shear wave-speed variations with respect to the
average velocity at each depth. Note that the limits of color scales change with depth and
that the colors saturate in certain regions. (right) Maps of radial anisotropy parameter ξ ,
showing regions in which horizontally polarized waves are faster (blue) and slower (orange)
than vertically polarized wavs. Note the asymmetry of the colorscale. Black circles indicate
locations of hotspots from Steinberger, 2000.
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Figure 5.6: Map of lithospheric thickness developed by associating the LAB with the max-
imum negative gradient of velocity with depth. Note that all major cratons are identified
with ∼230 km thick lithosphere.



162

 

 

75km

−6−5−4−3−2−1 0 1 2 3 4 5 6

 

 

250km

−4 −3 −2 −1 0 1 2 3 4

 

 

150km

−5 −4 −3 −2 −1 0 1 2 3 4 5

 

 

400km

−3 −2 −1 0 1 2 3

 

 

200km

−5 −4 −3 −2 −1 0 1 2 3 4 5

 

 

575km

−3 −2 −1 0 1 2 3

Figure 5.7: (left) Maps of the Voigt average shear wave-speed variations in Africa and
surrounding oceans with respect to the average velocity at each depth. Note that the limits
of color scales change with depth and that the colors saturate in certain regions.
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Figure 5.8: Maps of the Voigt average shear wave-speed variations in South America and
surrounding oceans with respect to the average velocity at each depth. Note that the limits
of color scales change with depth and that the colors saturate in certain regions. Green
circles indicate locations of hotspots from Steinberger, 2000
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Figure 5.9: Maps of the Voigt average shear wave-speed variations in North America and
surrounding oceans with respect to the average velocity at each depth. Note that the limits
of color scales change with depth and that the colors saturate in certain regions. Green
circles indicate locations of hotspots from Steinberger, 2000
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Figure 5.10: Maps of the Voigt average shear wave-speed variations in Australia and sur-
rounding oceans with respect to the average velocity at each depth. Note that the limits of
color scales change with depth and that the colors saturate in certain regions. Green circles
indicate locations of hotspots from Steinberger, 2000
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Figure 5.11: Maps of the Voigt average shear wave-speed variations in the Pacific basin
with respect to the average velocity at each depth. Note that the limits of color scales
change with depth and that the colors saturate in certain regions. Green circles indicate
locations of hotspots from Steinberger, 2000
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Figure 5.12: Maps of the Voigt average shear wave-speed variations in Asia and surround-
ing oceans with respect to the average velocity at each depth. Note that the limits of color
scales change with depth and that the colors saturate in certain regions. Green circles indi-
cate locations of hotspots from Steinberger, 2000.
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Figure 5.13: (left) Maps showing the changes in the surface extent of regions as more
clusters are allowed to form. The number of clusters increases from 2 to 6 going from top
to bottom. (right) The profiles of isotropic shear wave-speed associated with each region
shown on the left.



169

Figure 5.14: Maps showing the surface extent of the 6 regions we have divided the up-
per mantle into based on similarity between profiles of isotropic wave-speed. The colors
correspond to the lines shown in Figure 5.15.
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Figure 5.15: Absolute isotropic shear wave-speeds of model SEMum plotted against depth
on the y-axis. The colored lines indicate the harmonic mean of the velocity profiles within
each of the 6 clusters shown in Figure 5.14. The black lines indicate all the velocity profiles
within a given cluster, whose harmonic mean is the representative (colored) profile for that
cluster.
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Chapter 6

Conclusion and Perspectives

6.1 Upper mantle elastic structure

In Chapters 4 and 5, we developed and applied a new hybrid method of tomography, which

allowed us to leverage accurate, fully-numerical wave propagation modeling techniques in

order to image the anisotropic structure of the Earth’s mantle. This new method reduces the

contamination of mantle structure that besets widely used approximate methods, especially

due to inaccurate treatment of crustal effects, as discussed in Chapter 3. Our tomographic

model is by no means an end in and of itself. Instead, its creation is important for three

distinct reasons:

1. We have validated a new way of tomographically mapping the Earth’s interior, which
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can be applied to a bigger and higher-frequency dataset in order to not only better

image the upper mantle, but also gain new insights into the structure of the lower

mantle and make more robust regional and small-scale models of elastic structure.

2. For the first time, we have demonstrated that the long-wavelength mantle structure

imaged using approximate semi-analytic techniques is robust and representative of

the Earth’s true structure.

3. We have imaged structures in the upper mantle that were not clearly seen in previous

global tomographic models, providing new constraints on the temperature, compo-

sition as well as flow in the mantle. Furthermore, by applying clustering analysis to

the absolute shear wave-speed profiles, we have created a new way of exploring the

relationship between surface expressions of tectonics and their elastic signature in

the upper mantle.

One of the main goals of seismic tomography is to image the interior structure of the Earth

so as to improve our knowledge of Earth’s temperature, composition, and dynamics. Vari-

ations of shear wave-speed that we have mapped within the upper mantle arise from varia-

tions in composition and temperature. Constraints from mineral physics can inform inter-

pretations of observed velocities in terms of temperature and abundances of major mantle

mineral phases. The average profile of shear wave-speed of SEMum is characterized by

a more prominent low velocity zone which is bounded by steeper velocity gradients with

depth than those present in other 1D models of the Earth (e.g. Dziewonski and Anderson,
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1981; Montagner and Kennett, 1996; Kustowski et al., 2008). Understanding the implica-

tions of this structure requires analyses similar to those used by several recent studies to

interpret Earth’s average 1D shear wave-speed structure in terms of chemistry and compo-

sition (Cammarano et al., 2005; Cammarano and Romanowicz, 2007; Cammarano et al.,

2009; Xu et al., 2008; Ritsema et al., 2009).

By applying an agglomerative clustering technique to the profiles of absolute shear wave-

speed beneath a grid of points on the surface of the Earth, we have been able to explore the

similarities of seismic structure in the upper mantle. We found that defining the distance

between clusters to be the maximum Euclidean distance between their constituent profiles

results in clusters that bear close resemblance to surface expressions of tectonics. Creating

4 clusters enabled us to differentiate among regions of old and young oceanic lithosphere

as well as tectonically stable and active continents. Additional clusters distinguished stable

younger continental regions from older Proterozoic/Archean cratons, and identified regions

of anomalously low velocities at depths greater than 150 km, which were predominantly

located beneath oceanic lithosphere. The relationship of this last cluster to models of plume

flux (e.g. Sleep, 1989) and residual basement depth (e.g. Muller et al., 2008) should be

analyzed in order to elucidate the character of this region, which is not clearly related to

surface expressions of tectonics. Furthermore, by extracting the average seismic profile

of each cluster, we constructed velocity profiles that were representative of each tectonic

region. The thermochemical character of each of these profiles can be analyzed using the

same mineral-physics techniques that are applied to the analysis of the average velocity
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structure of the Earth.

The Earth’s geoid and dynamic topography provide constraints on the density anomalies

and flow within the Earth (e.g. Hager, 1984; Forte et al., 1993), which are, in turn, related

to tomographic models of shear wave-speed through a non-linear relationship between ve-

locity and density perturbations. This is what motivated Simmons et al. (2006) to attempt

to improve constraints on mantle structure by supplementing seismic data with models of

dynamic topography and free-air gravity. However, the problem of such an approach is

that poorly-constrained density-to-velocity scalings need to be determined; Simmons et al.

(2006) invert for scaling coefficients that vary only with radius. indeed, as velocity anoma-

lies can be due to both temperature and compositional variations, it is likely that multiple

density-to-velocity scaling factors are relevant at any location in the mantle.

More direct constraints on flow in the mantle can be provided by anisotropic structure.

Becker et al. (2007) demonstrated that a synthetic model of 3D variations of ξ expected for

A-type olivine fabric formation in an upper mantle flow field driven by plate motions and

density anomalies scaled from a tomographic VS model can reproduce some of the major

features of observed anisotropic structure. This indicates that though variations of ξ result

from a time-integrated history of deformation (see, e.g. Ribe, 1992), the dominant signal

may nonetheless arise due to deformation in Mesozoic/Cenozoic flow. By comparing the

variations of ξ against global models of free-air gravity and dynamic topography, especially

at intermediate lengthscales that are sensitive to upper mantle density / flow variations, we
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can leverage SEMum to better map mantle flow.

6.2 Upper mantle anelastic structure

Mapping 3D variations of seismic attenuation within the mantle is important for discrimi-

nating between chemical and thermal heterogeneity as well as interpreting models of elastic

structure derived from data at different frequencies. While mapping of 3D elastic structure

of the upper mantle has benefited from approximate first-order perturbation techniques,

modeling of the 3D distribution of seismic attenuation has lagged behind due to difficulties

in accounting for purely elastic effects of scattering at sharp interfaces and (de)focusing,

which can obscure the anelastic signal. SEMum allows us to more accurately model this

elastic effects in two ways:

1. It provides improved phase alignment that is crucial for extracting the signal of at-

tenuation, which is predominantly contained in waveform amplitudes;

2. By imaging sharper and stronger variations of shear wave-speed, SEMum more ac-

curately predicts purely elastic effects on waveform amplitudes, allowing for purely

elastic effects to be disentangled from the signal due to attenuation.

The most recent upper mantle Q model from the Berkeley group, QRLW8 (Gung and Ro-

manowicz, 2004), was derived from long period seismograms in the time domain, com-



176

prising both fundamental mode surface waves and overtones. It was developed using an

iterative waveform inversion technique, in which elastic and anelastic structure is solved

for in successive steps. Until now, the theoretical framework for both the forward and

inverse parts of our inversions has been the non-linear asymptotic mode coupling theory

with focusing (Romanowicz, 1987; Li and Romanowicz, 1995), which limits our ability to

retrieve 3D Q structure at wavelengths shorter than degree 8 in a spherical harmonics ex-

pansion of the model. In order to make further progress, it is therefore necessary to not only

obtain better constraints on lateral gradients of elastic structure - which SEMum provides -

but also to utilize a more accurate forward modeling theory.

The hybrid tomographic technique developed in Chapter 4 provides a solution to this chal-

lenge. Using SEM to forward model wave propagation through the Earth will allow us to

account accurately, for the first time, for the effects of scattering and (de)focusing. There-

fore, we intend to apply the same hybrid method to the creation of a new model of upper

mantle attenuation.
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