MIGRATING SWARMS OF BRITTLE-FAILURE EARTHQUAKES IN THE LOWER CRUST BENEATH MAMMOTH MOUNTAIN, CALIFORNIA

David Shelly and David Hill
GRL, October 2011
Contents

• Tectonic Setting
 • Long Valley Caldera
 • Mammoth Mountain
• Seismicity
 • Mammoth Mountain
 • Other examples
• Data and Methods
• Results
• Source Mechanism(s)
• Conclusions
Long Valley Caldera

- Long Valley volcanic field (LVVF) includes the Mammoth Mountain and the Inyo-Mono volcanic chain.
- Dominant source of eastern CA volcanism in the past 2 Ma.
Long Valley Caldera

- Long Valley volcanic field (LVVF) includes the Mammoth Mountain and the Inyo-Mono volcanic chain.
- Dominant source of eastern CA volcanism in the past 2 Ma.
 - Location near the Mina deflection
 - Location above the westward-moving delamination of the lithosphere beneath Sierra Nevada
Long Valley Caldera

Right-stepping left-lateral faults
- Owen’s Valley
- Walker Lane
- Mono Basin
- Pre- and Post-caldera structures
Mammoth Mountain

- Surrounded by mafic volcanic vents
 - Basaltic magma eruptions 200-8 ka
- Volcanic unrest from 1980 to 2000
 - Number of EQ swarms
 - M6 near the caldera in May, 1980
 - Uplift of the resurgent dome by 80 cm
 - 1989-1990: 11-month-long swarm at Mammoth Mountain
Seismicity

- Microseismicity 1984-2008
 - 2006: 53 → 140
 - 2008: 8 → 21
 - 2009: 55 → 602

- Brittle failure in upper 8-km, often as swarms and sequences of overlapping events
- LP events in the mid-crust
- Short-duration swarms (brittle failure)
Seismicity

- Brittle failure in upper 8-km, often as swarms and sequences of overlapping events
- LP events in the mid-crust
- Short-duration swarms (brittle failure)
Deep brittle-failures beneath volcanoes

- Kilauea in Hawaii
- Northern volcanic rift zone in Iceland
 - Events below brittle-ductile transition
 - Bursts (hours) propagated up and down
 - Long-term (weeks) upward migration observed
- Taupo Volcanic Zone in New Zealand
- Aleutian arc volcanoes in Alaska
- Lake Tahoe, California (likely)
 - ~200 km NW of Long Valley
 - August, 2003
 - Upward migration
 - 8 mm of uplift and 6 mm horizontal displacement from GPS
Data and methods

• Main objective
 • Identify similar small EQs & relocate events
 • Using waveform cross-correlation and double-difference

• Data
 • Long Valley Caldera seismic network
 • Short-period, vertical component
Data and methods

- **Main objective**
 - Identify similar small EQs & relocate events
 - Using waveform cross-correlation and double-difference

- **Data**
 - Long Valley Caldera seismic network
 - Short-period, vertical component
Data and methods

- Main objective
 - Identify similar small EQs & relocate events
 - Using waveform cross-correlation and double-difference
- Data
 - Long Valley Caldera seismic network
 - Short-period, vertical component
- Event Detection
 - P and S waveform templates from NCSN, 2-10 Hz, 2.5 seconds long
 - Correlation above background noise, events don’t need to be identical
- Event location
 - double-difference location (hypoDD)
 - Includes catalog P and S arrival times
Space-time progression

- 2006 sequence
 - deep and diffused
 - Waveforms less similar
- 2009 sequence
 - Begins where the 2008 sequence terminates
 - Very similar waveforms
Space-time progression

- Cumulative catalog events
 - Events greater than 15 km
 - Referenced to mean station elevation ~2.5 km above sea level
- Systematic decelerating upward migration
 - Red dots: already catalogued
 - Blue dots: newly detected
September 29-30, 2009 swarm
Waveforms

- Decreasing S-P times in 2008 and 2009; longer S-P times in 2006
- S arrival times consistent
- MRD shows weak S-waves in the 2006 swarms
Waveforms

- Decreasing S-P times in 2008 and 2009; longer S-P times in 2006
- Variations in S wave amplitudes between different stations
 - High attenuation above MRD or different distribution of focal mechanisms
First motions

Compressional (up) Dilational (down)

2009 swarm (Sept. 29-30)
Enhanced long-period energy

First motion polarity variation

2009-09-29 20:51:36.92
2009-09-29 21:05:42.27

2009-09-29 20:51:36.92
2009-09-29 21:05:42.27

Compressional (up)
Dilational (down)

NN S

WW EE
Source mechanism(s)

- Fluids – magma, CO$_2$, or water
- Hydrofracturing or slip on pre-existing fracture
- Fluid diffusion or migrating fluid pressure pulse
- 2009 swarm – faster fluid migration rates
 - Viscosity
 - Diffusion of CO$_2$-rich fluid

USGS Fact Sheet 172-96
Source mechanism(s)

- Pressurized CO$_2$
 - Short duration
 - Smaller magnitudes
 - Fast migration
 - Similar to Iceland Swarms
 - Supercritical at lower crustal conditions
 - Lower viscosity than magma
 - High concentration of CO$_2$ gas at the surface
- Diversity in source mechanism
Take-home message

• Brittle failure in the lower crust induced by fluid injection and migration

• Speed, duration and lower magnitudes of the 2009 swarm suggest migration of CO$_2$ released from underlying magma