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Abstract
Earthquake Early Warning and the Physics of Earthquake Rupture
by
Gilead Wurman
Doctor of Philosophy in Earth and Planetary Science
University of California, Berkeley
Professor Richard M. Allen, Chair

One of the great debates in seismology today revolves around the question of
whether earthquake ruptures are self-similar, cascading failures, or whether their
size 1s somehow predetermined at the start of the rupture. If earthquakes are self-
similar there is theoretically no way to determine the magnitude of an event until
the rupture has completely terminated, while if it is deterministic the magnitude
should be immediately discernible. Recent advances in Earthquake Early Warning
methodologies provide new insight into the fundamental physics of earthquake
rupture and highlight the importance of understanding the answer to this question.

Observations of the amplitude and frequency content of early P-wave arrivals
suggest that some information about the final size of an earthquake is already
present within a few seconds of the initiation of rupture, in agreement with a host
of other observations that show a degree of scaling between large and small
earthquakes. While this suggests that earthquakes are deterministic, there is
likewise a large body of work, both observational and model-based, that indicates
that this is not true and earthquakes are self-similar.

This work documents the process of calibrating and testing the ElarmS Earthquake
Early Warning methodology in northern California on the Northern California and
Berkeley Digital Seismic Networks. In the process the work adds to the body of
observations which show a dependency on event magnitude of P-wave frequency
content and amplitude. These observations are corroborated with a new set of
independent observations of kinematic slip distributions. These new observations
indicate that the early slip on a fault also scales with magnitude and suggest again
that earthquakes are not entirely self-similar cascading events.
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In an effort to assign a physical mechanism to the observations of scaling, both in
P-waves and in kinematic slip inversions, a hypothetical model is tested wherein
the intensity of the early rupture imparts more or less energy to the rupture front
and affects the likelihood of the rupture continuing or dying out in the face of
unfavorable conditions further along the fault plane. The results of testing this
hypothesis are somewhat equivocal, but they are suggestive of the likely truth, that
earthquakes exhibit aspects of both deterministic and cascading rupture to some
degree. Understanding the details of the interplay between these two aspects is
crucial to the successful application of Earthquake Early Warning systems,
especially in rare large earthquakes for which there is little empirical data on the
performance of these systems.
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Earthquakes are among the most powerful natural phenomena on Earth,
and when large earthquakes have coincided with human populations they
have caused some of the deadliest natural disasters in recorded history. The
M 7.8 1976 Tangshan earthquake in China killed an estimated 250,000
people, and the 1556 Shanxi earthquake reportedly killed in excess of
800,000. On an annualized basis, earthquakes cause $5.3 billion in damage
in the United States alone [Federal Emergency Management Agency, 2008].
Great effort has been put into mitigating the effects of earthquakes in the
long and medium terms. We now regularly forecast earthquake probabilities
on the scale of a few decades [Working Group on California Earthquake
Probabilities, 2008] and using these forecasts we generate empirical
estimates of ground motions [Petersen et al., 2008]. New buildings in the
United States are designed to withstand these ground motions and remain
life-safe. Meanwhile, public education initiatives such as the Great California
ShakeOut seek to increase the proportion of the population that is prepared
for an earthquake by raising awareness of disaster preparedness and home
retrofit measures.

The elusive aspect of earthquake mitigation has always been the short
term. Unlike other natural disasters such as hurricanes or, in many cases,
volcanic eruptions, there is no time to evacuate or take shelter once the
event has begun. Seismic waves travel at between 10 and 20 times the
speed of sound, and the time between the initiation of an earthquake and
the onset of shaking at nearby locations is on the order of only a few
seconds. Although many different avenues of research have been pursued in
the quest for short-term earthquake prediction, there is to date no
precursory phenomenon which is both unique to earthquakes and universal
to earthquakes. Also, no means exist to translate precursory phenomena
into the precise size, location and timing of an imminent event, i.e. an
actionable warning. However, recent advances in real-time seismic
monitoring have opened up a new avenue for short-term earthquake
mitigation: Earthquake Early Warning.

Earthquake Early Warning (EEW) at its most basic relies on detection of
seismic activity at one or more stations on a network, and relaying that
detection to other sites on the network or to assets in the area protected by
the network. Mexico City has been using such a “frontal detection” system
for over a decade [Espinosa Aranda et al., 1995]. These methods require
detecting the damaging S-waves and surface waves from an earthquake
before an estimating the intensity of shaking, and thus rely on the fact that
the speed of seismic waves, while quite fast, is much slower than the speed
of digital communications. The warning afforded by these methods is
dependent on the earthquake source being close to the seismometers but far
from the assets that require protection. More recent methods detect and
characterize the P-waves of earthquakes to estimate the intensity of
impending shaking [Allen, 2004; Wu and Kanamori, 2005a; Wu and
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Kanamori, 2005b; Wu et al., 2006; Allen, 2007], and rely on the fact that
the weaker P-waves travel faster than the damaging S-waves and surface
waves to enable on-site warning as well as network-based warning. These
methods are better suited to regions like California, Japan and Taiwan,
where hazardous faults exist in close proximity to population centers.

As a practical matter, EEW systems based on P-waves function by
exploiting empirically observed correlations between some property of the
early P-wave (amplitude, spectral content, etc.) and the final magnitude of
the earthquake. While the statistical significance of the observations, and the
observations themselves, continue to be debated [Rydelek and Horiuchi,
2006; Wolfe, 2006], these correlations appear to offer some insight into the
deeper physics of earthquake rupture. In particular, these observations
speak to one of the more hotly-debated topics in modern seismology:
whether earthquakes are self-similar, cascading ruptures or whether they
scale deterministically from a very early time in the rupture history. The
purpose of this dissertation is to address this fundamental question through
a combination of observational seismology and kinematic and dynamic
modeling.

The first part of this dissertation involves observations of the correlation
between the predominant period of early P-wave arrivals and the final
magnitude of an earthquake. These observations are part of an ongoing
effort to establish an operational EEW system in California using the ElarmS
methodology [Allen, 2007]. This work establishes empirical scaling
relationships for both predominant period and peak amplitude of P-waves
with magnitude, and demonstrates the performance of the methodology on
two moderate events in the greater San Francisco Bay Area. These observed
scaling relationships add to the statistical significance of observations from
preceding work, leading to increased confidence in the veracity of these
scaling relationships.

In the second part, we seek to corroborate the observations of scaling in
P-waves with an independent dataset: kinematic source inversions. Using a
large online database of kinematic inversions, we extract the moment
release in the early part of the rupture history and correlate it to the final
magnitude of each event. We test the correlations against the null
hypothesis that earthquakes are purely cascading events and find that this
hypothesis can be rejected with a high degree of confidence. This finding, in
combination with the observed relationship between the properties of early
P-waves and earthquake magnitude, suggests that the early rupture history
has some effect on the later evolution of rupture.

The third and final part of this dissertation posits a physical mechanism
by which this effect might be mediated. We hypothesize that some property
of the early rupture, which we call its “intensity,” imparts more or less
energy to the rupture front and respectively either enables or inhibits the
rupture to overcome regions of the fault which are unfavorable to rupture.
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We simulate this hypothesis using dynamic rupture models in two and three
dimensions with imposed heterogeneous shear stress and a rate-and-state
friction law. We search over four parameters governing the shear stress
distribution, and five governing the friction law using a Genetic Algorithm
search, and find plausible values for all but one parameter, suggesting the
hypothesized behavior is physically realistic.

Much further work must be done, but these three studies bring us closer
to answering the question of whether or not earthquakes are purely
cascading phenomena.



2. Toward Earthquake Early Warning
iIn Northern California

Gilead Wurman, Richard M. Allen, and Peter Lombard
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2.1. Abstract

Earthquake Early Warning systems are an approach to earthquake hazard
mitigation which takes advantage of the rapid availability of earthquake
information to quantify the hazard associated with an earthquake and issue
a prediction of impending ground motion prior to its arrival in populated or
otherwise sensitive areas. One such method, Earthquake Alarm Systems
(ElarmS) has been under development in southern California and, more
recently, in northern California. Event magnitude is estimated using the peak
amplitude and the maximum predominant period of the initial P-wave.
ElarmS incorporates ground motion prediction equations and algorithms
from ShakeMap for prediction of ground motions in advance of the S-wave
arrival. The first peak ground motion estimates are available one second
after the first P-wave trigger, and are updated each second thereafter for
the duration of the event. The ElarmS methodology has been calibrated
using 43 events ranging in size from M. 3.0 to My, 7.1 which occurred in
northern California since 2001. We present the results of this calibration, as
well as the first implementation of ElarmS in an automated, non-interactive
setting and the results of 8 months of non-interactive operation in northern
California. Between February and September of 2006, ElarmS successfully
processed 75 events between My 2.86 to My, 5.0. We find that the ElarmS
methodology processed these events reliably and accurately in the non-
interactive setting. The median warning time afforded by this method is 49
seconds at the major population centers of the Bay Area. For these events
the magnitude estimate is within an average of 0.5 units of the network-
derived magnitude, and the ground motion prediction from ElarmsS is within
an average of 0.1 units of the observed Modified Mercalli Intensity.

2.2. Introduction

Earthquake Early Warning (EEW) systems are combinations of
instrumentation, methodology and software designed to analyze rapidly an
ongoing earthquake and issue real-time information about the hazard to
persons and property before the onset of strong ground motions in
populated areas. Japan, Mexico, and Turkey currently operate EEW systems,
while Taiwan, Italy, Romania and Greece are testing EEW systems [Allen,
2006, and references therein]. Japan’s EEW system, which has been
providing warnings to a limited group of users, is anticipated to begin
widespread public dissemination of warnings in the summer of 2007. The
system operating in Mexico is a frontal detection system, which relies on the
fact that the largest potential earthquake epicenters are 300 km from Mexico
City in the Middle America Trench, such that an array of seismometers
between the fault and the city can reliably detect and measure the intensity
of an earthquake’s S-waves and issue a warning well before those waves
arrive at the city [Espinosa Aranda et al., 1995].
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In California, the proximity of major faults to population centers limits the
utility of frontal detection systems for EEW. Under the conditions found in
California a useful EEW system must be able to rapidly and reliably estimate
the location, origin time and size of an earthquake based on the P-wave
alone. The system must then generate predictions of ground motion at
multiple locations of interest and disseminate these predictions in the time
between the P-wave arrival and the S-wave arrival. Such systems are being
developed in Taiwan [Wu and Kanamori, 2005a] and in Japan [Odaka et al.,
2003] which rely on measurement of the amplitude of the P-wave as a proxy
for the magnitude of the earthquake. Such systems are effective for small-
and moderate-size events, but are susceptible to saturation in large events.
Ground accelerations near the source of large earthquakes saturate at
approximately 10-15 m/s?, due in part to ground response becoming
nonlinear under large stresses.

The Earthquake Alarm Systems (ElarmS) methodology [Allen and
Kanamori, 2003] has been tested using data from southern California,
Taiwan, Japan and the Pacific Northwest of the United States [O/son and
Allen, 2005; Lockman and Allen, 2007], and uses the maximum
predominant period (z,"%) of the first 1 to 4 seconds of the P-wave as an
estimate of earthquake magnitude. The ElarmS methodology has been
shown to be effective in these areas for M 3 and larger earthquakes [Allen
and Kanamori, 2003; Lockman and Allen, 2005; Olson and Allen, 2005;
Allen, 2006; Lockman and Allen, 2007; Allen, 2007]. In the process of
testing ElarmS in northern California, we find that using both z,”# and the
peak amplitude of the P-wave improves the accuracy of the ElarmS
magnitude estimate. We have been testing the effectiveness of the
combined methodology since February of 2006 and find that the system
estimates the magnitude of earthquakes in northern California rapidly,
accurately and reliably.

In addition to incorporating P-wave peak amplitude in the magnitude
determination, we have incorporated the attenuation relationships (hereafter
referred to as ground motion prediction equations, GMPEs) and algorithms of
ShakeMap [Wald et al., 2005] into the part of the methodology which
predicts ground motions during an event. The GMPEs used by ShakeMap
[Newmark and Hall, 1982; Boore et al., 1997; Wald et al., 1999a;
Boatwright et al., 2003] replace the empirical attenuation relationships
developed for southern California [Allen, 2004; Allen, 2007]. ShakeMap
algorithms [Wald et al., 1999a] incorporate individual station corrections to
observations as well as scaling of predicted ground motions based on local
geology [Borcherdt, 1994; Wills et al., 2000] throughout northern California.
In addition to making ElarmS ground motion predictions directly comparable
to other products like ShakeMap itself, we find the incorporation of these
algorithms allows us to generate accurate and timely predictions of ground
motion at seismic stations.
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2.3. The ElarmS Methodology

Implementing Earthquake Early Warning in northern California presents
opportunities not seen in other places for improving the robustness of the
ElarmS methodology across different networks. A functional EEW system in
northern California must integrate data from both high-gain, broadband
velocity instruments and from low-gain, strong-motion accelerometer
stations. The system must collect this data over the two networks currently
operating in northern California: the Northern California Seismic Network
(NCSN) operated by the US Geological Survey, and the Berkeley Digital
Seismic Network (BDSN) operated by the UC Berkeley Seismological
Laboratory. Within each network, high-gain velocity instruments (channels
HHE, HHN and HHZ, which we address as HH henceforth) are more useful
for measuring the small (M < 4.5) events on which we rely for calibration
and routine validation of the method. However, these stations will clip
quickly in the event of a nearby major earthquake. Low-gain, strong-motion
accelerometers (channels HNE, HNN and HNZ; or HLE, HLN and HLZ, which
we address as HN and HL respectively) will remain on-scale longer in the
event of a nearby major earthquake, but are of limited use in measuring
small events due to low signal-to-noise ratios. Between networks,
differences in instrumentation may lead to different behavior within the
same channel type (i.e., velocity or accelerometer). All of these differing
behaviors must be accounted for by an EEW system which seeks to
maximize the amount of usable data in @ minimum amount of time.

We use the Earthquake Alarm Systems (ElarmS) methodology developed
by Allen and Kanamori [2003], with some modifications for the particular
problems of northern California. The ElarmS methodology is built of two
systems: a single-waveform processing system extracts parameters of
interest from a single channel of data, and sends these parameters to an
event processing system. The latter integrates output from waveform
processing of multiple channels into information about an event’s size, time
and location, and in fact whether there is an event at all. Given an event's
size and location, ground motion predictions are issued for specific locations
on a second-by-second basis during the event. Within both of these systems
we encounter the need to modify the original ElarmS methodology to
account for the specific challenges of northern California data. These will be
discussed at length later.

2.3.1. Calibration dataset

Prior to applying ElarmS in a real-time setting, we tested the method on
43 calibration events ranging in size from M_ 3.0 to My, 7.1 which occurred in
northern California since 2001. The calibration events are shown in Figure
2.1. We were restricted from using older events such as the 1989 Loma
Prieta and 1992 Petrolia earthquakes in the calibration, because prior to
2001 the NCSN and BDSN networks did not have sufficient station coverage
or the appropriate instrument types to measure these events. The
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calibration events were used to establish the maximum predominant period
vs. magnitude and peak amplitude vs. magnitude relations described below.
2.3.2. Triggering and event location

The first step in the early warning process is to detect an event. This
begins with the waveform processing system, which must detect the initial
P-wave of an event and issue a trigger at the onset of that P-wave. We use a
short-term/long-term average method following Allen [1978]. The algorithm
is applied to the vertical velocity trace with timescales of 0.5 sec for the
short-term average and 5 sec for the long term, and a triggering threshold
of 20. Triggering can be accomplished using any real-time algorithm, but
cannot be done with any method which requires data after the trigger itself,
as such data is by definition unavailable at the time of the trigger.
Consequently, methods such as auto-regressive pickers [Sleeman and van
Eck, 1999] and pickers based on wavelet transforms [Zhang et al., 2003],
while more precise than a simple short-term/long-term average method are
not practical for this application. This also means generally that any filter
applied to the data must be causal.

When the first station triggers, the event processing system will
provisionally locate the event beneath that station. When a second station
triggers the provisional location moves to a point directly between the two
stations, based on the timing of the arrivals. Once trigger times are
produced at three or more locations, the event location and origin time is
estimated using trilateration and a grid-search algorithm to find the optimal
solution. Although a depth can be estimated using more stations or more
sophisticated algorithms, this is unnecessary for the geologic setting of
northern California, where most events nucleate at less than 20 km depth
[Hill et al., 1990]. We currently fix the depth of the event to be 8 km.

Based on the estimated event location and time, warning times can be
calculated for any geographical locations of interest. These warning times
are based on a move-out speed of 3.75 km/s, which is determined from
observations of the onset times of significant ground motions in southern
California. Again, although more sophisticated methods exist for the
estimation of time until significant shaking, when one considers the
computational requirements for greater sophistication against the need for
rapid processing and notification, this simple move-out speed seems
sufficient for the purpose of estimating the warning time.

2.3.3. Magnitude from predominant period

The ElarmS methodology rests largely on the use of the maximum
predominant period (z,"%) within the first 4 seconds of the P-wave as an
indicator of the size of the event [Allen and Kanamori, 2003; Olson and
Allen, 2005]. The predominant period, 7, of a single vertical channel (HHZ,
HLZ or HNZ) is calculated in real time using the iterative relation



X.
Tp,/:27z' E/ (2.1)
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where X; = o Xi.; + x7 and D; = o Di.; + (dx/dt)?. The constant o is a
smoothing constant, and x; is the ground velocity of the last sample.
Because both velocity sensors and accelerometers are used, the
accelerometer traces must be integrated to velocity before z, can be
calculated. In addition, a causal 3 Hz low-pass Butterworth filter is applied
iteratively to the velocity data [Allen and Kanamori, 2003]. This calculation
is done by the waveform processing system, and the maximum value of z,
within the first 4 seconds of the P-wave arrival is recorded and sent to the
event processing system, which uses it to estimate magnitude according to a
predetermined relationship.

Our initial attempts to establish a relationship between magnitude and
7, were frustrated by noise in the low-magnitude data (M < 4.5). This
problem led us to adopt two significant additions to the ElarmS
methodology. The first of these is a criterion for the disqualification of S-
wave data. Part of the low magnitude scatter was due to many small events
being located close to our stations in the San Francisco Bay Area. As a
result, the S-wave arrival occurs within 4 seconds of the P-wave arrival, and
since S-waves generally have longer periods than the associated P-waves, it
is the S-wave 7, which gets recorded as 7,”%*. A simple criterion based on an
S-minus-P move-out of 1 second per 8 km eliminates these false signals and
cleans up the data somewhat, though we do apply a minimum S-minus-P
time of 1 second, based on the assumption that the event is 8 km deep.

In addition to this S-wave criterion, we chose to incorporate a second
criterion for the exclusion of data, based on the signal-to-noise ratio (SNR)
of each waveform. As this was a particular problem for low-gain
accelerometers (HL and HN channels), we chose to treat each channel type
separately. The absolute noise level is calculated as a very long-term
average from inter-event data, and is frozen when a trigger is detected.
From the time of the trigger until the event is over, the signal level is
calculated using a 0.05-second short-term average [Allen, 1978], and the
ratio of these two is the SNR. In principle the higher we require the SNR to
be, the better our results. However, we must consider the need for fast
measurements as well as good ones, and the greater SNR we require, the
fewer measurements of the first second of the P-wave will be admitted. By
weighing the reduction in scatter of small magnitude z,”%* against the
number of excluded z, measurements in the first second of data, we arrive
at the optimal minimum SNR: 100 for HH channels and 200 for HL and HN
channels.

The results of calibrating z,”%* vs. magnitude are shown in Figure 2.2.
Note that low-gain accelerometer data still shows a significant scatter in

10



spite of the two added criteria. We are investigating the root cause of this
scatter, but presently the HN channels (Figure 2.2c) exhibit the largest
scatter, and we have provisionally removed them from the 7,
determination until this can be resolved. The best fit relationship between

" and magnitude is

using only the HH and HL channels. This relationship is plotted in Figure 2.2.
In determining magnitude from 2, for any new event we only use data
from HH and HL channels to be consistent with the calibration of this
relationship.

2.3.4. Magnitude from P-wave peak amplitude

While we have succeeded in reducing the scatter in measurement of z,"%*
at low magnitudes, the scatter is still sufficient to present us a problem in
discriminating between small non-hazardous events and large hazardous
events. Because of this scatter, there is a potential to misidentify a small
event as a large one, leading to a false alarm. This is of critical importance in
many early warning applications, as a high incidence of false alarms will
drastically reduce the credibility and utility of the warnings. This is especially
true in applications where the cost of false alarms is high, such as industrial
process interruption. In order to further improve this discrimination, we have
added a second, independent estimate for rapid magnitude determination.
Using a method similar to that of Wu et al. [2006], we calculate the peak
amplitude of the P-wave, scaled by the logarithm of the epicentral distance.
As with %, we glean the peak amplitude from the first 4 seconds of the
vertical record. Wu et al. used the peak displacement, P, of the P-wave, but
we chose to analyze displacement, velocity and acceleration for each channel
type independently. In theory, the displacement record has longer periods
than the acceleration or velocity records, and will be less susceptible to
random high frequency excursions. For velocity instruments (HH channels)
this holds true, and measuring the peak amplitude in displacement yields the
lowest error. However, for accelerometer channels (HN and HL), the act of
numerically integrating twice (from acceleration to velocity and then again to
displacement) introduces errors to the point where using the velocity record
rather than displacement yields a better magnitude estimate.

We also investigated the merit of using between 1 and 5 seconds of P-
wave data for determining Py or P, (peak velocity, for HN and HL channels).
Using less than 4 seconds yielded greater errors, and between using 4 and 5
seconds there was little difference in performance (4 seconds performed
slightly better for HH, slightly worse for HL and HN channels). We chose to
use 4 seconds for the sake of internal consistency with our z,%*
measurements, which also use 4 seconds of P-wave data.
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The results of calibrating Py and P, (which we henceforth abbreviate Pg,)
vs. magnitude are shown in Figure 2.3. The amplitudes are plotted as a
function of magnitude, after being scaled to an epicentral distance of 10 km
using the best-fit relations in Egs. 2.3 through 2.5 below. These plots do not
show nearly the scatter at low magnitudes that the 7, vs. magnitude plot
does in Figure 2.2. However, the Py, of the largest (M, 7.1) event is
significantly lower than predicted. This is due to the fact that this event
incorporates data from more distant stations than is normally allowed, as
will be discussed in detail later. Due to this effect, the P4, measurements for
the M,y 7.1 event were not used in the best fit lines plotted in Figure 2.3.

Although the variability of the HN data seen in 7,"%* is visible to a lesser
degree in P,, (Figure 2.3c) the data are not unusable. However, we chose to
fit HL and HN data separately to minimize the error of measurements on the
HL channels. The best fit relationships between magnitude and Py, are

M =1.04-log,,(P)+5.16-log,, (A +1.27 (2.3)
(HH channels)

M =1.37-log,y(R) +4.25-log,,(R)+1.57 (2.4)
(HL channels)

M =1.63-log,,(P) +4.40-log,, (R +1.65 (2.5)
(HN channels)

where R is the distance in kilometers from the station to the epicenter. When
the source of scatter in the HN data is found and controlled for, it may be
beneficial to unify the relationships for HL and HN channels. Since the HH
channels use P, rather than P, the relationship for HH channels must remain
separate from the other two.
2.3.5. Data integration and magnitude determination

The waveform processing system sends any new information available to
the event processing system every tenth of a second for four seconds after a
trigger. This includes the maximum value of 7, or Py, only if that
maximum has changed since the last tenth of a second. The 7,"%* data is
accompanied by the value of the SNR at the time of the measurement. This
low data volume has the advantage of being easily transmissible over
existing station telemetry, so that the waveform processing system can
potentially be implemented at each station independent of the rest of the
network. The advantage of this approach, in turn, is that the waveform
processing happens much sooner and much more reliably, as there is no
delay for telemetry of data over the network, and no risk of data dropout
leading to errors in processing. Instead, the large volume of data being
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produced by the sensors is reduced on site to a few parameters of interest
which can be cheaply transmitted over the network.

The event processing system gathers the transmitted data from the
waveform processing systems at each station within 100 km of the
estimated epicenter. This is the distance within which frequency-dependent
attenuation (Q) has a minimal effect on the predominant period
measurement [Allen and Kanamori, 2003]. For the two largest calibration
events, the My, 6.5 San Simeon earthquake and the M, 7.1 earthquake in
the Gorda Plate, this cutoff distance is increased to 150 km and 200 km
respectively, due to the lack of stations within 100 km of these events. We
justify this in particular for the Gorda Plate event by asserting that the
intervening crust between the event and the stations is mostly oceanic, and
has higher Q than continental crust [Vera et al., 1990]. The system
integrates the data from the stations once per second to determine a
magnitude estimate for the event as it progresses. Each time a new
maximum z,”%* or Py, value is reported, the event processing system checks
it for validity by examining whether the S-wave may have arrived at that
station, as described earlier in this section. It also checks that the SNR at
the time of a 3,® measurement exceeds the minimum required value. If
any of these checks fail, the event processing system ignores that
measurement and proceeds as if it was never reported.

The event processing system makes one more check, in which it looks for
an indication that a given channel has clipped. This indication is actually
given by the waveform processing system in the form of a negative SNR
beginning when the channel’s output first exceeds a particular threshold,
and extending for a fixed duration after the last sample which exceeds that
threshold. This duration represents the time required for the channel to
recover from the clipping event and become usable. The clipping threshold
and recovery time vary from channel to channel, and are encoded in the
waveform processing system at each station, so the event processing
system does not know anything about the value of the data, only whether it
has clipped. If the event processing system receives a clipping indication, it
immediately stops updating information from that station for the duration of
the event. The 7, value at the time of clipping is recorded as the final 7,
for that station, and the P,/ value for the station is stricken. The reason for
treating the two estimates differently is that we often find that the time at
which 7, is taken is not the same time as the peak amplitude of the P-
wave, so the 7,"%* value before the clipping occurred is still potentially valid.
In contrast, the fact that the sensor has clipped means a priori that the
previous Py, value has been exceeded, and is therefore invalid. In this
respect ,”® is more robust, as it can tolerate clipping of a channel and still
represent a valid estimate.

If the data passes all the checks, the quality of the data can be
reasonably assured, and the event processing system uses the updated
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information to produce a magnitude estimate for the event. It takes the
log10 average of 7, from each available channel, and calculates a

magnitude from the average value. The results of magnitude estimation for
the calibration events using " alone are shown as gray triangles in Figure
2.4. Note the significant scatter in the magnitude estimate below M =~ 4.5,
consistent with the calibration of 7, vs. magnitude from Figure 2.2.

The event processing system also takes the average value of P4, from
each station and calculates a magnitude from that average value. The
results for the calibration events are shown as gray squares in Figure 2.4.
Note the comparatively low magnitude assigned to the largest event in the
calibration dataset, consistent with Figure 2.3. As discussed earlier, this is
the result of incorporating data from more distant stations for this event.
However, it highlights a potential limitation of the Py, estimate. The Py,
estimate is susceptible to saturation near the fault for very large events.
This is because at fault-normal distances less than the length of the rupture
the distance to the farthest point of the rupture is significantly greater than
the distance to the nearest point. As a result, the effective distance between
the station and the rupture (i.e., the average distance between the station
and all points on the rupture) is greater than the actual fault-normal
distance, leading to lower P-wave amplitude than predicted for a given
epicentral distance.

The value of 7, does not appear to be susceptible to this effect [Olson
and Allen, 2005], but is much more susceptible to noise pollution at lower
magnitudes than peak amplitude measurements. Thus the two estimates of
7"? and Pgy, are particularly complementary, with the strengths of one
compensating for the weaknesses of the other, and using some combination
of the two magnitude estimates from 7z, and P4/, produces a more robust
single estimate. Currently, the two estimates are combined in a linear
average, the results of which are shown as black circles in Figure 2.4. Note
the superior performance at both ends of the magnitude scale as a result of
this combined approach. The large events are not underestimated, and the
scatter in the small events has been greatly reduced.

A more sophisticated scheme may be conceivable for the combination of
the 7, magnitude with the Py, magnitude. In particular, since we are
interested in the low-magnitude performance of Py, and the high-magnitude
performance of 7,”%, it makes sense to consider a progressive weighting
scheme in which the latter is more heavily weighted at low magnitudes and
the former more at high magnitudes. We investigated a scheme by which
the weighting changes linearly with the magnitude of the event, but found
that the data does not bear out the use of such a scheme. At this time the
simple linear average appears to be as good as any weighted average, so we
use the linear average.
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2.3.6. Ground motion prediction

The final step in an early warning system is to predict the severity of
imminent ground motions from an ongoing earthquake and to issue
warnings based on those predictions. We do not address the question of
when and how to issue warnings. For a discussion of this aspect of EEW, see
the work of Brown et al. [2009]. For this study, we observe that the 1-c
error in magnitude estimate reduces to a reasonable level (0.5 magnitude
units) when 4 seconds of data are available from 4 channels. We define this
criterion of 4 seconds of data in 4 channels as the “alarm time” for the
purposes of performance evaluation in the next section. However, we arrive
at this definition somewhat arbitrarily, and different users would require
different levels of uncertainty or timeliness, depending on their tolerance for
false or missed alarms [Brown et al., 2009].

ElarmS is capable of generating ground motion predictions through the
incorporation of algorithms from ShakeMap [Wald et al., 2005]. These
algorithms, which have been developed for and tested extensively in
California, incorporate empirically-derived GMPEs [Newmark and Hall, 1982;
Boore et al., 1997; Wald et al., 1999a; Boatwright et al., 2003], as well as
geological amplification correction and corrections for site conditions at
seismic stations [Borcherdt, 1994; Wills et al., 2000]. The ground motion
predictions are initially calculated using only the estimated magnitude and
location of the event, as no observations of peak ground motion are yet
available. We use the GMPE for the given magnitude to compute the
predicted ground motion on a regular grid of points with a spacing of 0.1°
around the source. The prediction at each point is then corrected for local
geological effects. The result is a coarsely spaced grid of points with
predictions of peak ground motion based solely on the magnitude and
location of the event. This grid can be interpolated to create predictions at
finer resolution, and to generate predictions for discrete locations of interest,
such as urban centers or seismic stations.

As the event progresses and the S-wave field expands outward from the
source, peak ground motion observations become available at each station.
The observations are first corrected for the site condition at the station, and
then the GMPE curve, based on magnitude and location, is linearly scaled up
or down to best fit the corrected observations. The resulting equation is used
to generate ground motion predictions on a regular grid as before, with the
addition of grid points representing the individual station observations
available at the time. This irregular grid is interpolated to produce a finer,
regular grid of peak ground motion incorporating magnitude, location and
station observations. This grid is predictive at all points ahead of the S-wave
front. The process is similar to that used to produce ShakeMaps after an
earthquake, but here it is done once per second. Initially there is very little
information to incorporate and the ground motion predictions are
correspondingly rough, but with each second that passes the information
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becomes more complete and the ground motion predictions are refined in
real time. ElarmS produces predictions of PGA and PGV at all points, which
are combined to produce a prediction of Modified Mercalli Intensity (MMI)
using the relationship of Wald et al. [1999b].
2.3.7. Simulating ElarmS

It is not practical to implement the ElarmS methodology online as
outlined in the first part of this section without first testing it offline to
ensure its functionality. This is because a full implementation requires the
investment of time and money to emplace the waveform processing system
at each station in the network. Therefore, we test the performance of the
methodology offline using a program that simulates the causality of
information after the event has completed. While this simulation may differ
somewhat from the final implementation of ElarmS, the behavior of the
methodology will not change appreciably from the results of the simulation.
Henceforth, when referring to “ElarmS” we refer to the simulation unless
otherwise stated.

2.4. ElarmS Performance

Since February 2006, we have been operating ElarmS automatically
following every event of M 3.0 or larger in northern California. This
processing is initiated 10 minutes after notification of a new event, in order
to allow the requisite data to be collected at the network data center for
retrieval. The processing is performed automatically with no human input or
oversight. We have been using the results of this automatic processing to
make improvements to the ElarmS methodology, and consequently it is
necessary on occasion to re-process these events after the fact, when a
significant change is made in the methodology. This reprocessing is
prompted by a human operator, but without any added input from the
operator. The process is identical to the automatic processing and uses the
same data which was gathered 10 minutes after each event. We call this
“non-interactive” processing, and we use it to indicate how a real-time
implementation of ElarmS might perform.

2.4.1. Performance of non-interactive processing

Between February and September of 2006, a total of 85 instances of non-
interactive processing were initiated. Of these, one is a duplicate event, a
result of the email notification system posting an update to an existing
event. One instance was a false event. This was not the result of a false
detection by ElarmS, but of an erroneous email notification.

The geographic distribution of the remaining 83 events is shown in Figure
2.5. Of these, one event was offshore Mendocino, with no stations within
100 km of the source. This is the cutoff distance for usable stations in the
ElarmS methodology, so the event produced no output. Seven events
suffered errors as a result of maintenance of the operating system. Five of
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these occurred consecutively, due to the extraordinary misfortune of an
update to the operating system coinciding with a temporal (not spatial)
cluster of small events (all M. < 3.6). The system maintenance prevented the
acquisition of data 10 minutes after the earthquake. Acquiring data at a later
time invalidates the “non-interactive” procedure, so these events are not
considered in this analysis.

The remaining 75 events range in magnitude from My 2.86 to My, 5.0. The
results of magnitude estimation for these 75 events are presented in Figure
2.6. This figure shows the magnitude errors (with respect to network-based
magnitudes, usually My, or M) produced by ElarmS at three different times
for each event. The initial magnitude error (Figure 2.6a) refers to the
magnitude estimation based on only the first second of P-wave data at the
first station or stations to detect the event. This is the earliest possible
magnitude determination, which can be used to give the maximum warning
time. The initial magnitude has a significant scatter (c = 0.72 magnitude
units) due to its reliance often on a single station's data.

Figure 2.6b shows the errors at “alarm time”, which we define as in the
previous section to be the time at which at least four seconds of P-wave data
are available from at least four different channels. The magnitude error at
this time is considerably less than in the first second (¢ = 0.54 magnitude
units). There are fewer events represented in this plot (66 events vs. 75 in
Figure 2.6a), because not all of the events are ever detected in enough
channels to meet the alarm criteria. This is primarily due to the weak signal
from small (M = 3) events, and in some cases results from a lack of enough
stations within 100 km of the epicenter.

Figure 2.6¢ shows the error in the final magnitude determination for
events that met the alarm criteria, using all available data from stations
within 100 km of the source. The scatter has decreased slightly (c ~ 0.48
magnitude units) due to the incorporation of