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Abstract

Spectra of the Earth’s free oscillations, which depart significantly from those pre-
dicted for spherically symmetric earth models, contain important information on the
Earth's large-scale aspherical structure. The studies contained in this thesis repre-
sent the initial attempt to use such data and the theory of Spectral “splitting” to
constrain the Earth’s large-scale three-dimensional structure.

An important theoretical result is that for an isolated free-oscillation mode, and
for known earthquake sources, a single function on the sphere, termed the splitting
function of the mode, is sufficient to determine the spectra of the mode for all sources
and receivers. This makes it possible to pose the nonlinear inverse problem in which
many spectra are used to determine the comparatively few parameters which define
the splitting function of the mode. Using long-period accelerograms of large events
recorded by the IDA network, splitting functions of 34 multiplets are retrieved.

The splitting functions, which provide linear constraints on the Earth’s aspherical
structure, are used to investigate the compatibility of the modal data set with pre-
existing mantle models based upon other types of data. This kind of investigation
provides fairly strong constraints on the value of dlnvp/dlnvs in the lower man-
tle, which is shown to lie in the interval (0.21, 0.51) with 90% confidence, strongly
discriminating against the value (0.8) that is often supposed.

Assuming proportionality among the relative perturbations in vp, vs and p, the
splitting functions are inverted for heterogeneous mantle structure, without reference
to preexisting models based upon other kinds of seismic data. The models so gen-
erla,ted are found to be remarkably similar to previous models, demonstrating that
the heterogeneity in seismic velocities is, at most, weakly dependent on frequency.

A second approach to the problem of inferring three-dimensional structure is also
developed, in which we directly solve the inverse problem in which the data are
observed modal spectra and the unknowns are the structural parameters. This
approach has advantages in the case that there are insufficient data to obtain stable

results for the splitting functions of some modes. The models generated in this way




are similar to those obtained by the inversion of splitting functions.

Some modes penetrating deep into the core are found to have a strong zonal
pattern in their splitting functions which is attributed to zonal anisotropy of the
inner core. Although the data set does not adequately constrain all of the parameters
upon which such anisotropy can depend, we derive a simple example of an anisotropic
inner-core model which can explain the splitting of the core modes and does not

violate the constraints provided by PKIKP travel-time data.

i




Contents

1 Introduction 1
1.1 Seismological Studies of the Earth’s Interior . . .. ........ . 1
1.2 Study of Earth Structure from Splitting of Normal Modes . . . . .. 3
1.3 Scope and Structure of the Thesis . . . . ... oo 6

2 Theoretical Formalism 11
9.1 Theory of Splitting of Free Oscillations . . . . ... .. ..o e 12
9.2 The Splitting Function . . .. .. oo 14
2.3 Differential Kernels . . . . v o v 18

931 Kernel coefficients for undulations of discontinuities . . . . .. 18
939 Kernels for heterogeneity . . . . . . . . ..o oo 19
93.3 Kernels for anisotropy . . . .+ <o oo .oy e e e e 20

9.4 Aspects on Heterogeneity in Fluid Regions . . ... .o e e 23
9.4.1 Response of a fluid to density anomalies in solid regions . . . . 24

2.4.2  Splitting effects due to heterogeneity in fluid regions of the Earth 29

9.5 Expansion of an Inner-Core Anisotropic Tensor Field . .. .. .. .. 34
2.5.1 Expansion in generalized spherical harmonics of a constant

tensor field . . . o e e 35

9.5.2 Expansion of analytic tensor fields. . . ... ........ .. 50

2.5.3 Basis tensors which contribute to splitting . . . .. .. .. .. 58

3 Inverse Theory 59

3.1 Stochastic Solution of the Inverse Problem . . . ... ... .. .. .. 60

v



3.2 Error and Resolution Estimates . . . . .. .. ... ... ... . ... 61

Data Selection and Processing 64
4.1 DataSelection. . .. ... ... .. ... .. ... .. .. .. 65
4.2 Editing and Filtering of Seismic Traces . . .. ... ....... ... 69
43 Noise. ... ... . 74
Inversion for the Splitting Functions 75
5.1 Modeling Considerations . . . ... ... ... ...... ... . ... 75
5.2 Results. ... ... . 77
5.2.1 Splitting functions . . . .. ... .. L L L 78
822 Errormaps .. ... ... 86
9.2.3 Resolution matrices. . . .. .. .. ... .. ... .. . ... 91
5.2.4 Size of the splitting functions ... ... ... ... ... .. . . 91
525 Aliasing . ... ... oL 92
5.2.6 Central frequency . . . . . ... .. ... ... .. .. ... .. 94
9.2.7 Splittingwidth . .. . ... L 96

S 9.2.8 Atftenuation . ... ... L 97
53 Discussion . . . ... ... L 98

Forward Modeling of Splitting Functions Using Existing Mantle

Models ‘ 107

6.1 The Relative Amplitudes of Lower-Mantle Heterogeneity in P and S
Velocities . .. ... ... 108
6.1.1 Experiment la: Value of &T%/gM2 | D 111
6.1.2  Experiment 1b: Correction for &MP/oT . . . ., . ., .. .. 115
6.1.3 Experiment 2a: Value of MP/g5W .. ... 118
6.1.4 Experiment 2b: Correction for pMPIgSW 119
6.1.5 Estimate of dlnca/dln 8 in the lower mantle . . . ... . . . 119
6.1.6 Implications of physical dispersion . . . . ... ... . . .. . 122

6.2 Relationship between Heterogeneities in Density and in Velocities . . 195




6.3 Prediction of Splitting Functions from Existing Mantle Models . .

Inversion for Earth Models

7.1 Introduction . . . v v v v e e e e e e e e e e e

7.2 Modeling Parameters . . . . . . . . ..o
7.2.1 Parameterizing heterogeneity in themantle. . . . . .. .. ..

7.2.2 Boundary undulations

7.2.3 Anisotropy in the inner core

...................

-------------------

7.2.4 Attenuation structureinthemantle. . . . . . ... . ... ..

7.3 Models to Fit Splitting Functions

...................

7.3.1 Aspherical model of themantle . ... ... .. ........
7.3.2 Modeling inner-core anisotropy . . .. ... ...
7.4 Models to Fit Split Spectra Directly . . . . .. ... .. ... ... ..
7.5 DISCUSSION v v v v v v v v v e e e e e e e e e e e e e e s
7.5.1 Heterogeneity inthemantle . . .. .. ... ... .. ... ..
7.5.2 Core-mantleboundary . . ... .. ... ...
7.5.3 Spherical corrections in the mantle . . . ... ... .. .. ..
'7.5.4 Core modes and inner-core anisotropy . « . . . . . . ... .
Conclusions
References

vi

. 127

132
132
134
134
136
137
144
145
145
147
152
160
160
168
170
171

176

178



To my Mother and Father

vit




Acknowledgements

I sincerely thank my thesis advisor, John Woodhouse, who has introduced me
to low-frequency seismology. I have had the fortune of working closely with him
during the course of this research and have benefited very much from his scientific
insight and experience. I have also enjoyed the experience of working together with
Domenico Giardini in the early stage of this research. The publication in Journal |
of Geophysical Research by Domenico, myself, and John provides the foundation for
Chapters 4 and 5 of this thesis. Many of my computer codes were developed by
modifying Domenico’s and John’s programs.

Adam Dziewonski and Richard O'Connell, who are members of my thesis com-
mittee, have provided valuable advice and have been invariably willing to be of
assistance during this research and my whole graduate education.

I would like to give very special thanks to Alessandro Forte, who has very kindly
spent his time reading carefully the manuscript of this thesis and pointing out gram-
matical and stylistic errors.

1 am also grateful to Brian Farrell, a member of my thesis committee, for his
reading of the manuscript and asking stimulating questions.

It is a pleasure to express my thanks to Philip England for his encouragement
during the first two years of my graduate study at Harvard.

I am grateful to the many people who have influenced this work and have enriched
my life over the years, particularly to my collaborators and classmates. Among them
are (alphabetically) Géran Ekstrém, Carl Gable, Hua-Jian Gao, Andrea Morelli,
Mike Ritzwoller, Wei-Jia Su, Winston Tao, and Yun Wong.

Most importantly and with greatest joy, I would like to sincerely thank my wife,
Yu-Hong, who has continually offered me moral support. Her encouragement, un-
derstanding, and tolerance were essential.

I acknowledge the digital data provided by Jon Berger, Duncan Agnew, and staff
of the IDA project. I also thank Andrea Morelli and Adam Dziewonski for allowing
me to make use of their unpublished model V.3, and John Woodhouse and Adam

viii




Dziewonski for their unpublished lower-mantle S-velocity model. This research was
supported by the grants EAR85-11400, EAR86-18829, EAR87-08622 from the Na-

tional Science Foundation.




Chapter 1

Introduction

1.1 Seismological Studies of the Earth’s Interior

Understanding the Earth, the planet on which we live, has been one of the major
goals in the course of science. Until the beginning of this century our knowledge of
the Earth was, however, largely limited to understanding near-surface phenomena
which were used to infer some very shallow structures just beneath the surface. It is
only in this century that seismology has begun to yield a series of revolutionary dis-
coveries on the Earth’s deep interior. Studies of seismic waves, which can penetrate
deep into the Earth, have led to most of our current knowledge about the interior.
Among all the disciplines of the Earth sciences, seismology continues to play the
most important role in detection of the spatial distribution of physical properties
within the Earth.

After several decades of effort seismologists have determined the radial distribu-
tions of the Earth’s elastic parameters and the density at all depths, with fair preci-
sion which is comparable to the lateral variations in these quantities. In recent years,
the accumulation of data from global seismological networks and the availability of
computers have enabled seismologists to begin the study of the lateral variations
of physical properties in the Earth. Although these variations are much smaller,

approximately by two orders of magnitude, than the radial variations, they play an



extremely important role in keeping the Earth dynamically active — without them
we would have a tectonically dead Earth. Within the past few years independent
results of modeling the three-dimensional Earth have been obtained from different
kinds of data and by different techniques. These seismic tomographic inferences have
already benefited other disciplines of the earth sciences. Geophysicists, for example,
have employed these tomographic results to model the mantle convection, the plate
motions, the undulation of the core-mantle boundary, and the geoid [e.g., Hager et
al., 1985; Forte and Peltier, 1987, 1989].

Seismoiogicéi studies of the large-scale three-dimensional structure of the Earth,
in recent years, may be broadly classified in terms of the data sets upon which
they are based. These are (1) large collections of P (and PKP, PKIKP) travel
times, le.g., Dziewonski et al., 1977; Poupinet et al., 1983; Clayton and Comer,
1983; Dziewonski, 1984; Creager and Jordan, 1986; Morelli et al., 1986; Morelli and
Dziewonski, 1987a, 1987b; Shearer et al., 1988]; (2) measurements of the locations of
spectral peaks of fundamental modes, interpreted asymptotically, and measurements
of phase and group velocities of fundamental mode surface waves, [e.g., Masters et
al., 1982; Nakanishi and Anderson, 1983, 1984; Woodhouse and Wong, 1986; Nataf
et al., 1986; Davis, 1987; Park, 1987; Wong, 1989]; (3) complete waveforms of mantle
waves, used as data in a least-squares in.version, le.g., Lerner-Lam and Jordan, 1983;
Woodhouse and Dziewonski, 1984; Tanimoto, 1985, 1986, 1987, 1988); (4) complete
waveforms of long-period body waves, [e.g., Woodhouse and Dziewonski, 1986]; and
(5) complete spectra of split multiplets in the free-oscillation spectrum, [e.g., Masters
and Gilbert, 1981; Woodhouse and Giardini, 1985; Woodhouse et al., 1986; Ritzwoller
et al., 1986, 1988; Giardini et al., 1987, 1988]. For recent reviews and more references
to the literature, see Lay [1987], Dziewonski and Woodhouse [1987], and Woodhouse
and Dziewonski [1989]. |

The subject of this thesis is to study large-scale three-dimensional Earth structure

from data of class (5}, i.e., spectra of split multiplets in the free-oscillation spectrum.




1.2 Study of Earth Structure from Splitting of
Normal Modes

The observed free oscillations of the Earth after a large earthquake were first
reported approximately 30 years ago [Benioff et al., 1961; Ness et al., 1961; Alsop
et al., 1961; Bogert, 1961]. Since then, central frequencies of more than a thousand
modes have been measured. These frequencies, together with other seismic data,
have been used to develop the widely used spherical earth models, e.g., Preliminary
Reference Farth Model of Dziewonski and Anderson [1981]. In these analyses, it
has béen assumed that the Earth is a spherically symmetric body, for which the
91 + 1 eigenfunctions (singlets) belonging to the same multiplet of angular order
I will have a single degenerate frequency. For the real Earth, however, sphericity
is an approximation and is not always valid. When certain aspherical structure of
the Earth is considered, the dégeneracy of the singlets breaks down and the so-
called “splitting” occurs. This is a phenomenon analogous to, for instance, the
Zeeman effect in atomic physics. Although theoretical analyses on the effects of
aspherical structure on the Earth’s free oscillations have a relatively long history
(among important contributions are by Dahlen {1968], Dahlen [1969], Woodhouse
and Dahlen [1978], Woodhouse [1980], and Woodhouse and Girnius [1982]), high-
quality low-frequency digital recordings have become available only in the last ten
years or so. The fine structure of the spectra of these recordings carries valuable
information on the interior structure of the Earth and provides the data on which
the studies in this thesis are based.

Very low frequency seismic signals, having wavelengths comparable to the Earth’s
radius, constitute valuable information on the Earth’s three-dimensional structure.
In studies of the lower mantle using travel-time anomalies [Clayton and Comer, 1983;
Dziewonski, 1984; Morelli and Dziewonski, 1987b] the individual data are sensitive to
very short wavelength features of the Earth, since typical wavelengths of 1-Hz signals
are less than 10 km. In order to determine the long wavelength heterogeneity, which

undoubtedly is of fundamental geodynamic significance, one has to rely upon an



inversion algorithm to correctly evaluate the appropriate averages. Because of the
distribution of events and stations, sampling is poor in some regions. Therefore,
although every precaution may be taken to avoid systematic errors, and although a
convincing case can be made that such errors have not seriously affected the results,
the suspicion might remain, for example, that features in travel-time models bearing
a relation to subduction zones may be artifacts of the high density of sources at
convergent plate boundaries.

Although it is not to be expected that free oscillations will yield high-resolution
images of the Earth, their physical nature is such that they are sensitive only to
very large-scale heterogeneity, and they provide therefore a natural data set for con-
straining such structure. Moreover, free oscillations of low angular degree constitute
the only kind of data for which source and receiver bias can be essentially ruled out
as a source of systematic error. It will be shown later in this thesis that despite the
fact that only 10 events and a sparse array of stations have been used, formal model
errors are rather uniform over the globe.

In addition to these spatial averaging properties, many free oscillation multiplets
are particularly sensitive to S-velocity structure which it has not yet proved possible
to model using S-wave travel timés. Thus the study of the splitting of normal modes
[Giardini et al., 1987], together with the study by Woodhouse and Dziewonski [1986]
in which long-period body waveforms are employed, are the first to constrain the
lower-mantle S-velocity heterogeneity.

Although it is not possible to obtain an independent reliable image of the three-
dimensional distribution of the density from the current data, the study of the
splitting and the coupling of the free oscillations will presumably provide solutions
to this geophysically very important problem as more data become available,

Masters and Gilbert [1981] showed that the mode 105; is split by an amount
more than double that predicted by virtue of the Earth’s rotation and ellipticity.
Ritzwoller et al. [1986], Woodhouse et al. [1986], Giardini et al. [1987], and the
current study confirm this phenomenon for a number of other multiplets which have

in commeon the property of being sensitive to heterogeneity deep in the core. This




large and unexpected effect, requiring an exotic phenomenon in the core, has been

another primary motivation for the work reported here. In an earlier stage of our

study [ Woodhouse et al., 1986; Giardini et al., 1987], we have tested the hypothesis

that the anomalous splitting of the core modes is caused by heterogeneity in the -
core and by the deviations of the core-mantle boundary (CMB) and the inner-core

boundary (ICB) from their hydrostatic shapes. We have found that the inclusion of
outer-core heterogeneity leads to models inconsistent with some modes. Under the
assumption that the outer core is homogeneous, our experiments required large zonal
structures at the CMB (~ 8 km undulation) and the ICB {~ 25 km undulation}
and in the inner core (~ 5% lateral heterogeneity). These results conflict with
measurements of the Earth’s nutation periods [Guwinn et al., 1986] and with evidence
from core-phase travel times [Morelli et al., 1986; Morelli and Dziewonski, 1987a;
Shearer et al., 1988; Souriau and Souriau, 1989]. An anisotropic inner-core model
has, therefore, been proposed [Woodhouse et al., 1986] to properly explain the the
behavior of the anomalously split modes. Evidence for the inner-core anisotropy has
been also obtained from studies of PKIKP travel times [Morelli et ol., 1986; Shearer
et al., 11988]. In order to provide a physical rationale for inner-core anisotropy,
Jeanloz and Wenk [1988] have shown that the convection in the inner core, suggested
by the high Rayleigh number of this region, can cause dynamic recrystallization of
inner-core material. The original seismological studies in which inner-core anisotropy
was proposed considered the model of transverse isotropy in the plane of the equator,
but they showed that while this model was fairly effective in separately modeling the
modal observations and the travel-time observations, it was not possible to obtain
" a model of this kind which simultaneously explained both types of data. It was
pointed out that both kinds of data favor, to a first approximation, a cylindrically
symmetric distribution of a,nisétropy, in which the symmetry axis coincides with the
Earth’s rotation axis. In this thesis we present a relatively simple model of such
kind which can explain the modal data without violating the constraints provided
by PKIKP travel-time data.

One shortcoming of the analysis to be presented here is the assumption that mul-



tiplets are “isolated”; that is to say that coupling among multiplets [Dahlen, £969;
Luh, 1973; Woodhouse, 1980] is neglected. As a consequence of this assumption
the theoretical spectra depend only upon heterogeneity of even harmonic degrees,
and thus it is only even degrees which are determinable by this approach. This
assumption also limits us to using only a small portién of the available data. Cou-
pling among multiplets is strongest, in general, for modes which are closely spaced
in frequency; some pairs of multiplets to be discussed below have singlets which are
interspersed, but nevertheless we neglect coupling and treat the data as if they were
simply the superposition of the spectra for isolated modes. Tests of the expected
strength of coupling have convinced us that the error made in this procedure is not
large for the multiplets studied here. Undoubtedly it is an important effect for many
other sets of multiplets, however, and the correct treatment of coupled modes is a

priority for future work.

1.3 Scope and Structure of the Thesis

A very important concept, which may also serve as an intermediate step in the in-
version for earth structure, is the so-called “splitting function” of a multiplet [ Wood-
house and Giardini, 1983]. If the sources are known, the spectra of a given multiplet
for many sources and many receivers depend only upon the splitting function n(4, ¢)
of the multiplet. This function is similar to the function dwyyc,1(6, ¢) introduced by
Jordan [1978] which, in turn, is similar to a phase velocity distribution for a surface
. wave of a given frequency. In fact (0, ¢) is equivalent to dwygea1(6, @) in the limit
that the horizontal wavelength of the mode is much smaller than the wavelength of
the heterogeneity; the analysis in terms of 7(8, ¢), however, does not require any
asymptotic approximations to be made, and thus it is equally applicable to modes
of high and low angular order.
One of our approaches to invert for three-dimensional earth models is to use the
splitting functions as an intermediate step in the inversions. We may first retrieve

the splitting functions mode by mode. For each mode we invert for the harmonic




coefficients of the splitting function from many spectra in a least-squares iterative
procedure. The resulting splitting functions (or their spherical harmonic coefficients)
constitute linear constraints on the Earth’s aspherical structure. These constraints
are, moreover, essentially model independent. We can then use these splitting func-
tions as data in an invert for the earth structure.  The inversion carried out in this
second step is linear, and quantities of different spherical harmonic degree s and
order t are decoupled.

An alternative inversion procedure is to bypass the intermediate step. Namely,
we may invert for earth models directly from the seismic spectra by a least-squares
iterative procedure. In this thesis the results using both schemes are presented and
compared with each other.

With the current data set we elect to ignore the higher-degree coeflicients of the
splitting functions and the earth struéture, rather than solve a very underconstrained
nonlinear problem. We are going to be concerned with spherical harmonics only up
to degree s = 4. Under this constraint some splitting coefficients are well resolved,
whereas others must be considered marginal. The earth models retrieved are fairly
satisfying in terms of our knowledge about the Earth from other independent data
and tec.hniques. With a greater number of very-long-period seismic stations and
~ a sufficient period of operation for many large events to be recorded, the splitting
functions of many multiplets could be determined with higher precision, enabling
tighter constraints to be placed on the Earth’s very-large-scale, three-dimensional
structure.

The multiplets used in this study, 34 in total, have very long periods, ranging
from 193 s to 2134 s, and are thus sensitive to the very-large-scale structures of
the Earth. These modes can be naturally divided into two groups: those whose
splitting behavior can be well explained by aspherical structure in the mantle; and
those whose splitting functions are dominated by zonal patterns which cannot be
accommodated in the mantle.

The splitting of the mantle modes depends upon aspherical perturbations in P-

velocity (@), S-velocity (5), and density (p) simultaneously. Unfortunately the data



involved in this study are insufficient to constrain all three quantities independently.
As a first approximation, the relative perturbations in these quantities may be as-
sumed proportional to one another. The splitting of our modes as a whole depends
much more upon the structures of the seismic velocities than upon the structure of
the density; therefore the value of the ratio d1ln «/d1n § has great importance in this
study. The evidence that this ratio as constrained by seismic data is much lower,
for the lower mantle, than the value based on laboratory experiments [Anderson et
al., 1968] has been reported in Giardini et al. [1987). Ritzwoller et al. [1988] have,
however, argued that this result can be debated if a proper model of the core-mantle
boundary {CMB) topography is introduced. In this thesis we will give a more careful
treatment on this issue. First we shall try to eliminate the CMB contamination by
combining the modal data so that the sensitivities of the combined data to the CMB
structure are canceled out. We will also treat the ratio dina/dln § as a statistical
variable and hence estimate its distribution. Together with some existing models of
the mantle, we find that the modal data do indeed constraint the value of this ratio
and that a significantly lower value than that of Anderson ef al. {1968] is required
for the lower mantle by seismic data.

In order to model the anomalous splitting of the core modes, we derive, as a
theoretical result, a general form of the inner-core anisotropic tensor field which
causes splitting effects possessing cylindrical symmetry. With only 8 core modes
available in this study, we do not expect to uniquely determine the parameters, even
for lower degrees, upon which the tensor field can depend. However we are able to
present examples of relatively simple anisotropic inner-core models which reconcile
the modal and the travel-time data. ,

In an indépendent; study, Ritzwoller et al. [1986 and 1988] have also studied
the splitting of normal modes by using similar techniques. In order to interpret
their interaction coefficients (essentially equivalent to our splitting functions), they
modeled the aspherical structure (of degree s = 2 only) of the mantle. They adopted
in the inversion the value of dln a/dln B from the laboratory experiments, which is

challenged in this study. Since they also included as data the results of Smith et




al. [1987] for many fundamental surface-wave equivalent modes, much attention was
paid to the structure in the upper mantle. Although they realized that the source
of the zonal structure in the splitting functions of the anomalously split modes is
located beneath the core-mantle boundary, Ritzwoller et al. [1988] did not model it.

In Chapter 2 of this thesis we present the theoretical results of this study. It
contains three major independent subjects: (1) The concept of splitting functions
and their relationship with observed seismograms and with earth structure (includ-
ing heterogeneity, anisotropy, and the undulations of discontinuities) are discussed.
(2) Considering that the fluid regions of the Earth are in hydrostatic equilibrium,
the lateral heterogeneity in these regions due to density anomalies located in solid
regions is calculated in a gravitationally consistent way; the significance of the sec-
ondary splitting effect of such heterogeneity in the fluid regions is checked. (3) As
a theoretical preparation for modeling inner-core anisotropy, a set of orthonormal
tensor bases is developed to expand analytic tensor flelds in the Hunit sphere.

In Chapter 3 we set up the framework of the inverse theory relevant to this study.
Stochastic solutions to nonlinear inverse problems are formally approached by itera-
tion. Formal analysis of resolution and errors is discussed for the linear neighborhood
of the model to which the iteration converges. In all analyses the case is considered
that additional constraints may be imposed on the basic equation.

The data used in this study are long-period accelerograms recorded by the Interna-
tional Deployment of Accelerometers (IDA) network. The selection and processing
of these data are described in Chapter 4.

The inversion procedure and our inferences of the splitting functions are presented
in Chapter 5. The inferred splitting functions possess a series of well-defined patterns
which can be directly linked to specific regions of the Earth’s interior by examin-
ing the corresponding modal differential kernels. The close correspondence between
the inferred splitting functions of multiplets possessing similar differential kernels
provides evidence (wh.ich is more compelling, we believe, than the formal error esti-
mates) that the splitting functions have been accurately retrieved and that they do,

indeed, reflect the Earth’s three-dimensional structure.



Forward modeling of splitting functions using some preexisting earth models is
performed in Chapter 6. Such an investigation provides a fairly strong constraint
on the value of dina/dln 8 in the lower mantle, which is shown to lie in the interval
(0.21, 0.51) with 90% confidence, strongly discriminating against the value (0.8)
that is often supposed. The synthetic splitting functions calculated from preexisting
earth models are essentially consistent with the retrieved splitting functions for most
of the multiplets we study.

In Chapter 7, large-scale three-dimensional earth models are developed by two
approaches: first by inverting the splitting functions which have been retrieved from
split seismic spectra, and second by inverting the split spectra directly. The mantle
models resulting from these two approaches are essentially identical, indicating that
the splitting functions can serve as a very useful intermediate stage for the study of
earth structure using split normal modes. Both models are remarkably similar to
preexisting models based upon studies of travel-time residuals and SH waveforms,
demonstrating that the heterogeneity in seismic velocities is, at most, weakly de-
pendent on frequency. The anomalous splitting of core modes is attributed to zonal
anisotropy in the inner core. Although the data set does not adequately constrain
all of the parameters upon which such anisotropy can depend, we do derive a simple

example of an anisotropic inner-core model which can explain the splitting of the

core modes without violating the constraints provided by PKIKP travel-time data.
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Chapter 2

Theoretical Formalism

We shall start this chapter with a brief summary of the theory of the splitting of the
Earth’s free oscillations. Assuming that we have already determined the eigenfunc-
tions and associated eigenfrequencies of free oscillations for a spherically symmetric,
non-rotating, elastic isotropic (SNREI) earth model and that the earthquake source
parameters and receiver responses are known, in order to calculate the seismogram
contribution from a particular isolated multiplet for a slightly aspherically perturbed
earth model we need only know the splitting matrix of this multiplet.

As an inverse problem, we may seek to retrieve from observed seismograms the
elements of splitting matrices, which contain information on the structure of the
Farth’s interior. However, the connections between the elements of a splitting ma-
trix and the structure of the Earth are not transparent. In Section 2.2 we introduce
the concept of splitting functions [ Woodhouse and Giardini, 1985], which are equiv-
alent to splitting matrices in terms of the information they contain. The splitting
function is defined on the surface of a sphere and represents the faciially integrated

“heterogeneity and anisotropy of the Earth’s interior. In order to formulate the lin-
earized inverse problem for the spherical harmonic coefficients of the splitting func-
tion, we also derive the partial derivatives of the seismogram with respect to these
coeflicients.

In the following section, we turn our attention to the relationship between the

splitting function and the Earth’s three-dimensional structure. The differential ker-
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nels, as functions of depth, of lateral heterogeneity, anisotropy, and the undulations
of internal discontinuities will be given.

If we consider the fluid regions of the Earth to be in hydrostatic equilibrium, the
lateral variation in these regions may not be specified independently. In Section 2.4
we give the formulation to calculate, in a gravitationally consistent way, the the
lateral heterogeneity in the fluid regions as the response to the density anomalies
located in the solid regions. We may attribute the splitting effects of such responses
directly to their origins — the density anomalies in the solid regions. In order to
check the significance of these secondary effects, we compare them to the splitting
effects caused directly by the heterogeneity in the solid regions for an ad hoc mantle
model, which is based upon some existing models.

As a theoretical preparation for modeling inner-core anisotropy, we present in
Section 2.5 a technique for expanding an inner-core a.nisofcropic tensor field. We
demonstrate there that a general elastic tensor field which is analytic in the umit
sphere can be expanded in a series of orthogonal basis tensor fields and that these
bases partition into two categories: (1) those which span a splitting-sensitive sub-

space and (2) those which span a null-subspace for splitting.

2.1 Theory of Splitting of Free Oscillations

At times after the source of an earthquake has ceased to act, the low-frequency
elastic displacement fleld may be regarded as the superposition of many standing
waves. For a SNREI earth model, the displacement field may be written {Gilbert,
1971a; Gilbert and Dziewonski, 1975]

u(x,t) =" i ) (x) exp(iwyt) (2.1

k mz-l
where the real part is understood, a{¥) are coefficients determined by the source, ut*)
are the eigenfunctions and wy are the eigenfrequencies of the free oscillations of the
Earth. Eigenfunctions with the same k and different m have the same degenerate

eigenfrequency wg. Together, they constitute a mode, or more precisely a multiplet,
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of free oscillation; each of them with different mn is termed a singlet. The multiplet
index k, incorporates the angular order (), the overtone number (n), and the type
(spheroidal or toroidal) of the mode.

For a multiplet of angular order /, the eigenfunctions u{¥) may be expressed in

terms of complex spherical harmonics Y;™(, ¢)
ul) = URYmE 4+ VE Y 4 WE(-F x V1) (2.2)

where U), V¥ and W) are functions of radius r and characterize the mode (J®
and V) vanish for a toroidal mode; W*) vanishes for a spheroidal mode); Vy =
B85+ csch pdy; and T, 8, ¢ are unit vectors in the spherical-coordinate directions. In
this thesis we normalize the eigenfunctions ul® according to Woodhouse and Dahlen

1978]
f pu®* Y = 66 (2.3)

where p is the density distribution of the Earth, ‘+’ denotes complex conjugation,
and 8 are Kronecker deltas.

Throughout this thesis it is assumed that we can separate an isolated multiplet
from thé other modes, i.e., we neglect coupling between multiplets [Dahlen, 1969;
Luh, 1973, 1974; Woodhouse, 1980]. Thus we are able to treat one mode at a time,
and accordingly we shall often omit the multiplet index k from our notations for
simplicity.

When certain aspherical structure of the Earth is considered, the degeneracy of
the singlets breaks down and so-called “splitting” occurs. A result of first-order
splitting theory [Dahlen, 1968, 1974; Woodhouse and Dahlen, 19?8] is that for a
slightly aspherically perturbed earth model, the eigenfunctions and eigenfrequencies
of the singlets of a mode can be derived from the splitting matrix H of that mode,
which is obtainable from the unperturbed spherical reference model. If U is the

matrix whose columns are the eigenvectors of H we have

HU = UQ (2.4)
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where €2 is the diagonal matrix of eigenvalues, with each diagonal element Q;; being
the perturbation in frequency of the jth singlet. The associated perturbed eigen-
function of the jth singlet can be expressed (to zeroth order) as
uj = i Unnjtm(x) (2.5)
izl
Woodhouse and Girnius [1982] have shown that the contribution of a particular
isolated multiplet to an observed seismogram (the convolution of ground displace-

ment with the instrumental response) can be written
u(t) = Relexp(iwt) r - exp(iH1) - 5] (2.6)

where 1 is the “receiver vector”, s is the “source vector”, and w is the complex ref-
erence frequency of the multiplet; these are evaluated for the unperturbed spherical
reference model. The vectors r, s have 2/+ 1 complex elements, labeled by azimuthal
order m (=1 < m < 1), and given, in the notation of Woodhouse and Girnius [1982],
by

Sy = Sp (05, Ps) rm = Ry (6, ¢r) (2.7)

where k is the multiplet index and 8, ¢, 6,, ¢, are the source and receiver co-latitude
and longitude. The vector s depends (linearly) upon the source moment tensor, and
the vector r depends upon instrument orientation and incorporates the instrumental

response.

2.2 The Splitting Function

_The splitting matrix H is a (21 + 1) x (2] + 1) complex matrix [Dahlen, 1968;
Woodhouse and Dahlen, 1978], which can be written

a1 3
-Hmm' = mQB(smm‘ -+ Wy Z 2 ,),ér:m’t Cat (28)

p0 tm-3
s even

with wo = Re(w) and
" 2 p N : ;
A= [ Y (0,4) Y0, 9) Y70, ¢)sin 0409 (2.9)
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where Y;(0, ¢) are completely normalized spherical harmonics, and symbol * de-
notes complex conjugation; we use the convention of Edmonds [1960]. We may also
write
mm't | m ! I s
Yo = fisl(—1) , (2.10)
-m m t
where the Wigner 3-7 symbol has been employed and where

fo =20+ 1‘){234: 1)5 ( ; ; Z ) ‘ (2.11)

The first term on the right side of (28) is the contribution arisiﬁg from Coriolis
forces; §) is the Earth’s rotational angular velocity, and B is the Coriolis splitting
parameter of the multiplet [Dahlen, 1968] (a bar is put over 8 in this thesis to
distinguish the usage of A which is reserved for § velocity). The coefficients ¢ in
(2.8) depend linearly upon the Earth’s internal heterogeneity of harmonic degree s

and order t, through expressions of the form
cw = baboc+ 0 HIH, + [(ML(r) - Smi(r)dr
d 0

+ " L(r) - Siinae(r)dr (2.12)

where the first term on the right side is the known, theoretical contribution from
the Earth’s hydrostatic ellipticity of figure [Dahlen, 1968, 1976; Woodhouse and
Dahlen, 1978]. In terms of the ellipticity splitting parameter &c}, = aey + o/0? /w?
(see Woodhouse and Dahlen, 1978, equation Al4; a is overbarred in this thesis to

distinguish the usage of a which is reserved for P velocity) we have

el fﬁ)%(gl*‘l{s)(m“l)-f
¢ (5 +1) ok

Quantities 644, my,, and émm, in (2.12) represent spherical harmonic coefficients of

(2.13)

the undulation of the d’th boundary, heterogeneity, and anisotropy of the Earth, re-
spectively, The corresponding differential kernels H¢, M, and M, can be calculated
from the spherical reference earth model.

The motivation for this study is to determine aspects of the Earth’s internal as-

pherical structure by analyzing seismic spectra; i.e., our aim is to use a collection
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of seismograms u(t), together with (2.6), (2.8), (2.12) to infer 6h%,, Smy(r), and
§ti,(r). Because fi, vanishes for odd s, we are necéssarily restricted to even de-
grees s. Equations (2.6) and (2.8), however, provide a useful intermediate stage in
the analysis, since they demonstrate that when the source and receiver parameters
are known, all spectra for a given multiplet depend only upon the relatively few
parameters represented by c,. Let us suppose that the maximum (even) degree of
heterogeneity which we wish to consider is smex < 21. Then the number of unknown

coefficients ¢, is

Smazx

2@+ =

s=0
5 &Ven

(Smaz + 1)(Smaz +2) (2.14)

po]

For a mode of degree 2, for example, for which the largest possible value of sz
is 4, there are only 15 coefficients ¢y; these should enable all spectra for the mode
to be modeled. Once these coefficients are determined, (2.12) then represents a set
of linear constraints on the model parameters §h%,, ém,;, and drhg,.

A usefu] visual representation of the splitting coefficients ¢, is given by the splitting

function {Woodhouse and Giardini, 1985] which is defined to be

2! 3
n(6,6)= 3 Z, e Y (0,6) (2.15)

s ‘&ven

In the asymptotic limit, ! 3> Smaz, the splitting function 5{8, ¢) is equal to the even
degree expansion of the relative local eigenfrequency perturbation duwygca) /wo defined
by Jordan [1978]. Equation (2.8) shows that the splitting matrix is completely
determined by the splitting coefficients ¢, together with the Coriolis parameter .
| 0B. It is of interest to show that the converse is also true, namely, that 013 and ¢y
are uniquely determined by the splitting matrix. Using an orthogonality property
of the Wigner 3-j symbols [Edmonds, 1960, equation 3.7.8], it may be shown that
(2.8) has the explicit inverse

3
= rnr T e

{ {
2541
Cst w(}f! me’( 1) . -Hmm‘




which demonstrates the stated result.

It may be noted that setting s = 0, ¢ = 0 in (2.16), we find

(471')“%w0c00 = tr H (2.17)

20+ 1
which is equivalent to the diagonal sum rule of Gulbert [1971b]; the right side is
the mean of the singlet eigenfrequency perturbations, and the left side is the spher-
ical part of wen(8,¢), which depends only upon the deviation of the “terrestrial
monopole” from the reference model. Thus (2.16) may be regarded as a generaliza-
tion of the diagonal sum rule.

In order to formulate the linearized, iterative inverse problem for ¢, we require
partial derivatives of the seismogram u(t) with respect to these coefficients.

Let us first evaluate:

d :
ST exp(iHt) (2.18)

We note that P(t) = exp(iHt) is the solution of the initial value problem

%’; ={HP P(0)=1 (2.19)

where I is the unit matrix. Perturbing this equation, we find that

%@ = 6HP+HSP  §P(0)=0 (2.20)

which has the (unique) solution

§P(t) = f "Bt — )i 6H P(¢)dt' (2.21)

0

Introducing the matrix U whose columns are the eigenvectors of H, we have

HU = UQ

(2.22)
P(t) = exp(tHt) = Uexp(if2t) U™

where £ is the diagonal matrix of eigenvalues. Equation (2.21) can then be written

: : ' . . .
5P£J'(i) = Z -/(;iU,'pe'n”{t_t )U;niéﬂmmf[fm.qemqqi Uq—jldt' (2‘.23)

pgmm/

Thus performing the integrations, we find that
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Mgt _ippt

dexp(iHt),, : e
L =N U U U e
OHrmm! %;: T T ey
where tlie term for p equal to g is obtained by taking the limit 1, — ,,. Using

(2.8), we find the following linearized form of (2.6):
¢$ast _ oilppt
du(t) = Re (z woerls ;7;qatmmmmécat) (2.25)
9g ~ Sepp

gat

(2.24)

where

r;, = Z Upprpt
s, = Z ) Sqr (2.26)
7pqst Z m Q‘st ™

mm’

Equation (2.25) may also be written

Su(t)=Re [wge“"‘ > by Z g'ftaqt

si

P I,Y.f st+rl I,YI o
(Z p q;;:'q (;P: B "['th" 97“:"()‘31 (22?)

PEg
which yields a relatively efficient procedure for the evaluation of du(t)/Ocy.

2.3 Differential Kernels

2.3.1 Kernel coefficients for undulations of discontinuities

If we choose normalized undulation (divided by the radius, r, of the discontinu-
ity) as our parameter 6k in (2.12), the corresponding kernel can be obtained from

equations (97) and (110) of Woodhouse and Dahlen [1978)
el = 1lp(a? = 36K, + pf° M, + pRO:

= 13[kK, + pM, + pRNT (2.28)

where the notation [ - ]¥ denotes the jump discontinuity of the enclosed quantity

~across the boundary, with the ;Sositive contribution arising from that side of the

boundary toward which T is directed; and kernels K,, M,, and R(® are given in

equations (101),(103), and (110) of Woodhouse and Dahlen [1978)], respectively.
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2.3.2 Kernels for heterogeneity

The heterogeneity can be characterized by different sets of parameters. In this
thesis we choose the relative perturbations in compressional velocity o, shear velocity

p and density p to describe the heterogeneity, i.e., we set dmy, in (2.12) as

dmy(r) = (Sas/a,88.4/B,6p/p) (2.29)

where the denominators are evaluated at the spherical reference model and the
numerators are the spherical harmonic components of degree s and order ¢ of the
perturbations. éay and 88, could be complex to incorporate attenuation effects.

The kernel M,(r) corresponding to this specification of heterogeneity can be written
M,(r) = (As(r), BS(T)'J Rs(r)) : (2.30)

The expressions for A,(r), B,(r) and R,(r) in terms of the eigenfunctions of the
multiplet in the reference model may be calculated by using equations (97} and

(110)-(112) of Woodhouse and Dahlen [1978]. After some straightforward algebra,

we obtain

wods(r) = 2rfa’pK,

wBi(r) = 2Fp(M, - 5K,)

and

AN

= sk, + pM, + pR{P) (2.33)

woRy(r) = rpl(e? — g-ﬁ?)ffs + B°M, + RO

where kernels K,, M, and R(®) are given in equations (100), (102) and (110} of
Woodhouse and Dahlen [1978], respectively; and « is the bulk modulus and 4 is the

shear modulus of the reference model.
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2.3.3 Kernels for anisotropy

Mochizuki [1986] has given explicit expressions for the coupling effects of anisotropy
in terms of spherical harmonic coefficients of 21 independent contravariant compo-
nents of an elastic tensor field. Here we show, however, that only 13 independent
combinations of these contribute in the case of splitting (i.e., self-coupling). It is
lconvenient, therefore, to decompose the elastic tensor perturbations ‘into two parts: |
one belonging to the subspace which does not contribute to splitting and the other
belonging to the orthogonal subspace.

The splitting matrix elements of a particular mode due to a general perturbation
in the elastic tensor L can be written [Woodhouse and Dahlen, 1978]

Hum = ZL [Vug : L:Vu,|dV (2.34)

Wy
where Un(m = ~l,...,0,...,1) are the displacement eigenfunctions given in (2.2)
and (2.3) with the multiplet index k omitted
The general elastic tensor L, a fourth rank tensor, can be expanded in terms of
generalized spherical harmonics
L=Y Z Z LI ()TN0, g)eaeseres (2.35)
afiys s=0 t=—s
where L% (a, B,v,6 each take values —1, 0, 1) are the coefficients chara,cteriziné
tensor L, e, are complex basis vectors as defined by equation (1.4) of Phinney and
Burridge [1973], YNt (with N = o+ f+~+8) are the generalized spherical harmonics

normalized so that
J VAT sin 0d0dg = buwbir | (2.36)

where the integration is taken over the surface of the unit sphere. The generalized
spherical harmonics used here are related to YNt defined by Phinney and Burridge

[1973] through

Y0, 4) = (234: 1)2 YN8, ¢) (2.37)

The expansion of L in terms of generalized spherical harmonics enables us to rewrite

(2.34)




Hp = --L vt ] S L (r)ememPe i R e (2.38)
2“’ s—e t— L] afvyé
& even
where the integration is taken from the center (r = 0) to the surface (r = a) of
the Earth; indices o, B, 7, § take values —1, 0, 1; £*f are symmetric variables (i.e.,

£*? = £P*) and are given by

151 = QLObr~Y(V £ iW) (2.39)
2 =0 | (2.40)
ettl = -%r—‘ [RU —I(1 + 1)V] (2.41)
€01 éﬂ V =1 (U = V) & i(W — r W) (2.42)

with Q4 = [(I+ N){I - N + 1)/2)%, and “*” denotes differentiation with respect to

r. Finally the coefficients €277 in (2.38) are dimensionless constants defined, for

even s, as
TN ' " { l § I 1 s )
R / (2.43)
____iiwvwi! ":;_N: NI Nﬂ 0 0 0
Equation {2.38) indicates that L‘;ﬁ”ﬁ with s odd do not contribute to splitting. This

can be verified by using the symmetry property Lopve o [Y50F along with the

properties of the Wigner 3-7 symbols.
A comparison between (2.8) and (2.38) leads to the result:
f SO Lefoget it dr (2.44)

Zw{) s

for the contribution of anisotropy to the splitting functions, where

afvyd .

g5 mamBgm=bgrfat (2.45)

=&

It is easy to check that

g?ﬁ’”f& P ~f—y-§ (2.46)

for both spheroidal and toroidal modes, where it-is assumed that s is even (see

(2.38)). Therefore (2.44) may be written in the form
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1 e afys | p-a—f-y-5 5 2
=53 Loy 15 g2Br8 .2 g 2.47
Cya g ]0 a%g 2( 8t )gs r T ( )

For any tensor L% we may decompose it into two parts

LoPAS — APy | Robd (2.48)
such that

AP ;% [P0 [oaBr5 PNt (2.49)
and

Ao = 3 Q(L“B""S AN 2t (2.50)

3,t
where N = o+ g+ v+ é. With the above decomposition of L, (2.47) becomes
Cst ] > ASPY goBrsp2 g (2.51)
ng o
And the tensor ﬁ does not contribute to splitting. The symmetry properties of A

can be summarized as
A""G"’E Aff’"a A”"S“‘G AL Bt (2.52)

This implies that for each degree s and order i, A“ﬁ " has only 13 independent
components. And for s = (0,2) this number is further reduced to (5,11) since A2
are not defined for |a + B+ + 6] > s YV = 01if [N| > s).

Based on the symmetries (2.52), émmy, in (2.12) may be put into the form

1) (2 (ﬂ))

5!"1131 e (Qst 19t 5 -3 9st (253)

where n == 13 for s > 4, and n = (11,5) for s = (2,0); and the independent
parameters {qrmE yi=1,2,...,n} are defined by

g% = wAZP 10y (2.54)

with w; being weighting coefficients and C' = &(r} + £4(r) being an elastic constant
evaluated at the reference model. We choose the weighting coefficients w; in such a

way that the parameter set {Qst yi=1,2,...,n}is normalize.d, ie.,
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509 + 60 = T (6D (r) + 65 ()Y (6, ) (2.62)

Iy
where 6go(s) is the effect “directly” due to the specified anomaly ép' and 6R', as if
the fluid regions did not respond to the density loading (60" = 6" = 0); and §pF)
is due to the effect of §p" and 6" alone.

Poisson’s equation and the associated boundary conditions for the perturbed sys-

tem then take the form of

V(¢ + 605 + 860 = 4xG(p + o' + 6¢”) (2.63)
[ + 505 + 6Nt = 0 at r == rqg(1 + 6R) (2.64}
6 V(o + 8o +6p"NE =0 atr=ryl+6h) (2.65)

where fi denotes the unit outward normal to the boundary; the notation [ - ]I denotes
the jump discontinuity of the enclosed quantity across boundary, with the positive
contribution arising from that side of the boundary toward which fi is directed; and
§h represents either §h' at X' or 6" at L”. Note that in (2.63) 6p' vanishes in
the fluid regions, §p” vanishes in the solid regions, and both vanish in the space
outside. of the Earth. The boundary conditions (2.64) and (2.65) are specified at
the perturbed boundaries r = rg{1 + &h); it is convenient to continue them to the
unperturbed boundaries r = ra. To the first order, these two conditions may be

specified at v = rq as
[ + gradh + 509 4+ 6Nt =0 atr=rg (2.66)
[0-( + grabh + 55 599(F))]j =0 at r =1y (2.67)

where g = dp/dr is the gravitational acceleration and ¥ is the unit outward normai
to the unperturbed boundary.

Since for the unperturbed Earth we have
Vip = 47Gp {2.68)
[Pl =0 at r=ry4 (2.69)
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O]t =0  atr=ry (2.70)

(2.63), (2.66) and (2.67) then reduce to

V2(60) + 60 = 4xG(6p' + 85") (2.71)
(60 + 60NF = _[gresh)t = 0 \ (2.72)
0.(6,05 (F) Ly +

[0:(8¢'%) + 8N = {’"‘*3‘"2“5}‘] = —4nG|p]Trbh (2.73)

or for each spherical harmonic component

(._di 2d  s(s+1)
dr? " rdr g2

(605 + 805N = 0 (2.75)

Y89 + 808) = arG(80, + 6", (2.74)

[(w@+w@mzmwmmmwﬁ (2.76)

where A, are the spherical harmonic expansion coefficients of &h.

By the definition of §p!5) and 8, the boundary-value problem (2.74)-(2.76)

may be decoupled into two parts

& 2d (s + 1 ,
(st 25— ( ss+1) ———Ybply) = 4x Gy, (2.77)
[605)F =0 at both & and B (2.78)

~4nGp|*ryéh!, at 3
gy {O el o 79

a
and

& 2d s(s+1 "
(Gmt+og - “"("“;;-l)&f’gf) = 4nGp}, (2.80)
Bt =0  at both &' and & (2.81)

d 0 at
(=80l 1t = (2.82)

T —4nGlp|try6h”, at L
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Since 6p), and bk, are given, 50> can be readily solved from (2.77)-(2.79) together
with the condition at infinity.
In order to solve the problem (2.80)-(2.82), we have to use the requirement that

the fluid regions are in hydrostatic equilibrium:
(p+ 60")V (i + 8 + 801F) = —V[p(r) + ép(r, 6, ¢)] | (2.83)

where p is the hydrostatic pressure of the unperturbed reference model, and ép is
the perturbations in pressure in the fluid regions. Collecting the first order terms in

(2.83), we obtain

50"V o+ pV (50 + 6y = ~Vbp (2.84)
or

(980" — (851 + 81 ))%l’f = ~V[bp+ p(60) + 60'7)] (2.85)

Expanding all pérturbations in (2.85) in spherical harmonics and separating the

radial and tangential components yield

d d

—&poo = —g6po0 — P (599(5) + 6&,9(1:)) (2.86)

dr dr

§po; = —p(6S) + 85))  fors£0 (2.87)
d

6o, = g7 (69D + 86U fors #0 (2.88)

where §ps, are the the spherical harmonic coefficients of ép.
The relation {2.88) may be easily modified to relate the topography, 6h%,, to the
gravitational potential 5(,9st)+6cp(m At a fluid-fluid boundary, £”, where the radius

is r4, we have the relations

2 (a8t —ra) (2:89)

pty = —[plrabhy,6(r — ra) (2.90)

where 6(r) is the Dirac delta fanction. Substituting (2.89) and (2.90) into {2.88),

we obtain simply
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rabhly = —g~1(60%) + 80))  at B, fors £ 0 (2.91)

Now we turn our attention back to the problem (2.80)-(2.82), which becomes by
virtue of (2.88) and (2.91) '

@ 2d  s(s+1) 24P (P 190" (s)
Gz + 75— (S +4meGy o Nows’ = 4nGg™ ——bpy, (2.92)
(68T =0 for all & and B | (2.93)
(F)
[d6;, JI=0 for ¥ (2.94)
s F s
[ e dnGg pb\NE = 4n Gy p #6080 for 37 (2.95)

where p* is defined as

. { p in fluid regions

P = (2.96)

0 in solid regions

Once 605 have been determined from (2.77)-(2.79), the boundary-value problem for
s (2. 92)-(2.95), can be readily be solved for s # 0. (Note that these equations
are valid only for s # 0). Equations (2.88) and (2.91) then give the result for 8p,
and &A%, |

For the spherical component (s = 0) §pl%, and 8h%; are simply zero, and thus so is
&p(F).

Finally, we may also wish to consider the perturbations in other physical quantities
in fluid regions due to the loading of the density anomaly 8o’ and 6A’. We take the
pertufbation in o (P velocity) in fluid regions

bo" =" 8a"(r) Yi(8, ¢) (2.97)
at :
as an example, but the argument is applicable to other quantifies. For the spherical
component (s = 0), the change in o results from the perturbation in the pressure,
and we need to know more about the physical properties of the fluid to determine
b |

For the purely aspherical case (s # 0), we may define a quantity Arg(r) in the

fluid regions by virtue of (2.87) and (2.88) | '
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dp_

Ary = “‘Spst( )#1 "“’5‘:081("“") = “6921(2;) ! (2.98)
where §p, = &p(s} + &p{m are the total perturbation in the gravitational potential.
An implication of (2.98) is that the thermodynamic state, which is characterized by
the pressure and the density, of the perturbed system at r is the same as that of the
unperturbed system at r — AT, where Ar, are the spherical-harmonic coeflicients

of the geoid in the perturbed system. This immediately leads to

faly, = ——%EATM for s £ 0 (2.99)

2.4.2 Splitting effects due to heterogeneity in fluid regions
of the Earth,

We have in the previous subsection developed a formulation which enables us to
calculate the response, 8p” and 6a”, of the fluid regions to a given density anomaly
§p specified in a solid region. This response will also contribute to the splitting of
normal modes.

Smce the spherical perturbation can be specified in fluid regions independently,
we shall assume, without loss of generality (the linearity of the problem guarantees
this), that a density anomaly §pu(r) with s # 0 is specified in a solid region. The

total splitting effect of 6ps can be written

Cst = /Rs(r)(épst/p)dr + ¢, (2.100)

where the first term of the right side is the “direct” contribution of §ps; with the
differential kernel R, being defined in (2.33), and ¢, represents the secondary effect
due to the response of the fluid regions to this density loading §pst. The response
is completely descnbed by the density and P-velocity redistributions (6p%, and bo,

respectively) in the fluid regions and by the deformations (614} of the sea surface
and other fluid-fluid interfaces (if any). Since these perturbations are obtainable
by using the formulae presented in the previous subsection, the secondary splitting

effect is easy to calculate:
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= f [As(r)(8eli/a) + Ru(r)(67%/ p))dr + S HY 613 (2.101)

d”

where the integration is over all the fluid regions and the summation is over all the
fluid-fluid boundaries d” (including the sea surface); kernels Ay(r), R(r), and H?
are given in (2.31), (2.33) and (2.28).

Equation (2.101) may be rewritten by virtue of (2.91) (2.98), and (2.99)

= [I5 =B s(r— ra) = 4,2 ROV Araryar (2102

F ras

If we regard the geoid perturbation Ar,, as a functional of the specified density

distribution §p4(F)
Ary(r) = Ary (r;6pa (7)) (2.103)
a Green’s function may be defined! by
Galr,7) = Arg (rs c‘S(F—ﬁ))‘ (2.104)

Then the geoid perturbation may be expressed by

Arg(r) = ] Go(r, 7)6pou(7)dr (2.105)
Substituting (2.105) into (2.102), we obtain
Cor = f (6pst/ )R (r)dr (2.106)
where the differential kernel R” is given by
B Hd’”
RI() = plr) {Z -;—G (ren)
g T
- r)da(r) | B(F)dp(F), ,_ o 107y
/ @7, a(r) T p(F) dr )dr (2.107)
Defining
R(r)=R(r)+ R'(r) s#£0 (2.108)

the total splitting effect due to the purely aspherical density anomaly §p,, specified
in the solid regions can be obtained from (2.100), (2.107), and (2.108)

't is easy to show that the form of this Green’s function is independent of spherical harmonic

order ¢
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Table 2.2: Geoid for the ad hoc earth model
AL A, BY A7 B} A} Al Bl A7 B: A} B} Ai Bj
cea surface | -32 -80 -105 82 -196 12 18 11 -¢ 12 -31 12 -1 32
CMB 72 68 -257 16 -111 -16 28 56 -47 -1 -89 2 -30 -88
iCB 24 22 -83 5 36 -1 1 2 -2 9 -3 6 -1 -3

The geoid is expressed in meters as Ar =3, Yt _o(Al costd + Bisin1g)p](6) (see Stacey 11977)).

Cyt = / Ry(8pau/ p)dr (2.100)

where the integration needs to be taken only over the solid regions in which the
density anomaly is specified.

The above analysis is readily modified for specified undulations of solid-solid and
solid-fluid boundaries. Since (2.90) is also valid for a general boundary undulation
§hes, the geoid perturbation due to the undulation 6h%, of the d’th boundary can be
obtained from (2.105):

Arg(r) = —G,(rq, el rabhS, (2.110)

which enables us to calculate the total splitting effect due to the specified undulation

§hd, of the d'th boundary:

e = HOBRS, + ¢ = HISHY, (2.111)
where
md _ pyd (7) da ) Ry(F) dp(F), ,.
Hy = Hotrde U Gulrime)(3 al(7) dr FONR
d"
— 2,112
; rar ] : ( 1 )

with H? being given by (2.28).

In this model, the density anomaly is specified in the mantle and the undulation
is specified at the CMB. These specified features will cause a perturbation in the
gravity field. In Table 2.2 the coefficients of the spherical harmonics of the geoid are
listed for the sea surface, the core-mantle boundary, and the inner-core boundary. As

a result of these gravitational perturbations, the distributions of density and elastic
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Table 2.3: Significance of splitting effects due to undulation of sea surface

s= 2 s§=4
Mode [t =0 t=1 t=2 t=0 t=1 1=2 t=3 t=4
Re BRe Im Re Imj Re Be Im Re Im BRe Im Re Im
053 3 -1 -281 37 .2 -2 0 i 0 g "0 -0 g 1
0354 1 0 2 1 -1 -1 ] 4 0 g -1 -4 ¢ -1
0% 6 0 1 6 -1 -1 3 -4 0 1 .34 0 0 0
153 -3 0 -6 i 0 1 0 1 0 0 1 -2 1 7
a5 1 -1 1 i -23
058 0 0 6 -1 0 1 A 0 0 5 0 0 0
852 0 0 1 6 -1 0 0 1 6 0 0 0 0 0
15 -1 a1 -4 7 -1 i 5 i 0 1 3 -2 0 22
057 0 4 4 o0 -2 ¢ I 1 0 0 2t 0 0 0
2853 0 0 2 0 0 -1 0 0 0 0 0 0 0 0
153 7 -1 -8 2 -2 i 5 1 it 1 6 -1 0 15
284 0 0 -6 0 0 -3 0 0 0 0 1 0 0 0
255 0 0 0 ] 0 0 G 0 0 0 0 0 0 0
156 1 -2 .13 1 -3 2 2 2 0 1 8 -1 ] 7
059 2 -1 -5 2 -3 -1 -8 -3 0 -6 .2 0 1
157 0 -1 -239 o -3 3 1 0 0 4 -1 0 -b8
25% 6 0 6 0 0 0 0 0 0 0 0 0 4]
158 ¢ -1 5 ¢ -2 -129 1 0 0 1 0 0 .2
453 “20.2 L1720 120 .2 2 -13 1 1 25 7 14 -1 6
253 0 0 -1 0 0 -3 0 -4 0 0 0 0 0 0
5393 0 0 -2 -1 ¢ 0 8 0 0 1 0 0 0 -1
454 g 0 -6 2 0 g -1 0 0 0 2 0 0 )
554 -2 -2 20 30 -2 1 -4 i 1 5 5§ 25 ¢ 16
555 -2 -2 25 47 -2 1 4 1 1 3 4 36 0 i61
3Ss 0 0 -1 10 0 0 G 0 0 0 0 0 0 0
693 | 0 0 2 32 4 i i 0 0 1 1 -7 0 -2
55 | -2 -2 47 215 -3 i -5 1 1 3 4 51 0 43
g5 -3 -3 7 17 3 2 46 1 1 1 3 202 g -1l
6910 .11 12 .9 .2 0 6 2 4 5 -7 6 4] 7
1154 -3 -2 8 8 -3 1 3 1 2 6 4 8 0 14
1352 203 T 34 -4 1 4 1 3 8 6 -18 0 4
11.95 -3 .2 9 5 -3 1 2 1 1 19 8 26 g 10
13593 -3 -3 6 7 -4 1 2 1 1 3 6 -11 0 5

Ratios ¢};/c,s are listed as percentages, where ¢, are the coefficients of the synthetic splitting
function calculated from the ad hoc model under the assumption that the fluid regions of the
Earth are still spherically symmetric; ¢}, are the effects due to the undulation of the sea surface
which is caused by the aspherical geoid of the ad hoc model.
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Table 2.4: Significance of splitting effects due to perturbations in the outer core

s= 2 s=4
Mode | £=0 t=1 t=12 t=0 t=1 t=2 t=23 =4
Re Re Im Re Im| Re Re Im Re Im Re Im Re Im
853 0 0 -89 g 0 0 0 0 0 0 0 0 0 0
054 0 0 1 0 0 0 0 3 0 0 0 0 5 0
055 0 © 0 0 0 i -5+ 0 0 -24 0 0 0
153 0 0 o 0 0 0 0 0 0 0 0 0 1
3S1 11 -5 -1t -1 4b
6395 0 0 1 0 0 0 0 -2 0 0 3 0 0
38, 2 -2 5 0 3 L1001 <18 -1 0 -2 60 -2 -1
154 0 0 0 g 0 0 0 0 0 0 0 6 O 0
oSy 0 0 2 60 0 0 0 -1 0 ] 9 0 0 0
253 1 g -0 0 1 B D 0 -3 o -2 -2
15s 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
254 g 0 13 ¢ 0 -6 -1 2 0 g -8 0 -2 -1
285 0 0 0 0 0 0 0 ¢ -1 0 ] 0 2 0
196 0 0 -4 0 0 0 ¥ 0 ] 0 1 0 0o -1
25y 0 0 0 0 0 0 0 0 0 0 0 0 0 0
157 ¢ 0 -149 0 0 0 0 3 0 0 2 0 0 28
256 g 0 ] c 0 0 0 0 0 0 0 0 0 0
158 0 0 5 g 0 53 0 15 4] 0 1 0 0 1
453 -1 ] 89 ¢t 0 0 4 -1 -1 0 -4 0 g 3
258 g 0 0 g 8 0 0 0 0 0 0 0 0 0
553 -2 -1 18 3 0 2 30 -3 -1 6 -6 0 -2 -9
454 -4 0 50 -1 0 0 5 -5 -1 6 -19 g -4 .38
594 0 0 -8 0 0 ] 0 0 0 0 -1 0 I3 4
555 0 0 -3 0 0 0 0 0 0 0 ] 0 0 20
35 1 0 3 2 0 -1 13 1 0 0 1 0 0 0
£33 -4 -2 21 -21 2 3 -4 -8 .1 0 -8 7 - -18
55 0 0 4 -1 0 0 0 -0 0 4] 0 0 4
053 A0 -1 -13 -2 1 i 31 -4 .2 0 -4 .15 g -12
5510 0 0 -1 g 0 0 0 0 -1 0 1 0 1
1194 -8 -2 2 -1 2 1 4 -5 -9 0 -12 -1 -4 M4
1359 4 -2 16 5 2 0 -4 -4 .12 g -12 2 -3 8
1155 -1y -2 31 -1 2 1 -3 -6 -7 1 -23 4 .2 28
1353 60 -2 <13 -1 2 0 2 -4 3 0 -10 1 -1 8

Ratios ¢,/c, are listed as percentages, where ¢y are the coefficients of the synthetic splitting
function calculated from the ad hoc model under the assumption that the fluid regions of the
Earth are still spherically symmetric; ¢, are the effects due to the perturbations in the outer core
which is caused by the aspherical gravity field of the ad hoc model.
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property in the fluid regions are deformed from their original spherically symmetric
state. The splitting effects due to thése perturbations in the fluid regions have been
calculated. The effects due to the undulation of the sea surface are listed in Table 2.3,
and Table 2.4 tabulates the effects due to the perturbations in the outer core.

In order to check how significant the secondary effects (¢},) are, we have performed
some synthetic experiments. We construct an ad hoc earth model which contains
only perturbations of spherical harmonic degree s = 2 and 4, using model M84A of
Woodhouse and Dziewonski [1984] for the upper-mantle heterogeneity, model V.3 of
Morelli and Dziewonski [1987b] for the lower-mantle heterogeneity, and model X222
of Morelli and Dziewonski [1987a] for the topography for the core-mantle boundary.

We assume that heterogeneity in o, 3, and p are related by
blnf=28lna=48Inp . (2.113)

where 3 is the S velocity, o is the P velocity, and p is the density.

Typically these secondary effects ¢, are a few percent of the total effect ¢,,. How-
ever in certain anomalous circumstances, where the contributions from the solid
regions themselves are very small due to cancellation, the contribution from the
fluid regions could dominate. We believe that this is an unstable phenomenon, i.e.,
a small variation of the ad hoc model would eliminate those anomalies (but it would

lead new anomalies meanwhile).

2.5 Expansion of an Inner-Core Anisotropic Ten-

sor Field

The seismological evidence that the inner core of the Earth is anisotropic has been
reported [e.g., Woodhouse et al., 1986; Morelli et al., 1986; Shearer et al., 1988]. In
those studies the anisotropic tensor field is assumed to take some very special forms. |
These assumption, of course, do not necessariiy represent reality. Indeed the modal
data and travel-time data cannot be explained simultaneously if the anisotropy is

assumed, as in studies mentioned above, to be transversely isotropic in the plane of
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the equator Woodhouse et dl., 1986]. Therefore it is interesting and safe to approach
the problem in a natural, general way: expanding the inner-core anisotropy in terms
of a set of compléte basis tensors. Here we derive a suitable basis of orthonormal
tensor fields in the unit sphere. The fields are required to be analytic at the origin,
which makes the task of constructing the basis not entirely straightforward.

In order to achieve our desired result in 2.5.2, we need first accomplish some .
preparatory work in 2.5.1, where we shall discuss how to expand a constant tensor
field in genera,hzed ‘spherical harmonics. Finally in 2.5.3 we partition the basis
tensors into two subspaces: those which contribute to the splitting of normal modes

and those who do not.

2.5.1 FExpansion in generalized spherical harmonics of a

constant tensor field

Consider a constant tensor field t of rank n having Cartesian components &ii;...in-
A rotation of the co-ordinate frame leads to a new set of components t';;, i, Which
are related to the original components by a certain linear transformation. Such

linear transformations, for a tensor of given rank, constitute a representation of

the rotation group which, in general, is reducible. Here we show that the problem

——__

of expanding a constant tensor field in terms of generalized spherical harmonics

[ Phinney and Burridge, 1973] is equivalent to that of decomposing this representation

into canomcal irreducible representations.

It is well known that the irreducible representat:ons of the rotation group are of
dimension 2j + 1 where j is an integer (the requirements that physical quantities
be single valued rules out the half-odd integral spin representations which occur in
quantum mechanical applications). We shall refer to j as the degree of the represen-
tation. Let D{e,,7) represent a rotation operator corresponding to a rotation of
the coordinate frame by Euler angles a, B, v [see Edmonds, 1960)}. Any irreducible
representation of degree j is isomorphic with the group of rotation matrices having

elements
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DY) (@, B,7) = €m1dY) (B)eim' (2.114)

where the notation is that of Edmonds [1960]. We shall refer to this as the canonical
representation of degree j. The generalized spherical harmonics of Phinney and

Burridge [1973] are a special case of the rotation matrix elements

Y{(6,9) = Dil($,6,0) = &, ()™ (2.115)

m

Let us suppose that we have determined that the representation generated by
certain tensor transformations can be resolved into R irreducible representations of
degrees jy, j2,...,jr (i.e., of dimension 251+1,252+1, ..., 2jp+1); i.e., let us assume
that we can define quantities Ty (k=1,2,... y By m= gy, —fx+1,- -+, ji) which are
known linear combinations of the compouents of t, which transform under rotations
according to the canonical irreducible representations of the rotation group of degree
Jr. If the coordinate frame is rotated by Euler angles a, 3, v the transformed values
are therefore given by

Tim = 3 D5l (0, B,7) T (2.116)

m! .

In order that T}, represent a complete decomposition into irreducible representa-
tions, the number of them must be the same as the number of independent elements,
M, say, in the original tensor. i.e.,

R

D@+ =M (2.117)

k=1
If t is taken to be a completely general tensor of given rank, n, then M = 3"
however, if we restrict attention to tensors possessing certain symmetries, then M
will have some smaller value. We shall refer to Tem as a set of canonical components
of the tensor t. In what follows we shall outline a general method for determining
such canonical components of a given tensor.

In this study we require such a decomposition for fourth rank tensors possessing

the symmetries of the elastic tensor:

ikt = i = tijie = tap; (2.118)
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In this case it is well known that there are 21 independent elements, and it will be
shown below that these transform according to a representation which reduces to 5
representations of degrees 1= 4, j2=2, a=2, 3a=0, 35 =0 — a result previously

obtained by Backus [1970]. In this case, therefore, equation (2.117) becomes
94+5+5+1+1=21 {2.119)

A decomposition of this kind has also recently been.obtained by Mochizuki [1988]. &
In addition to the case of an elastic tensor, we shall require such a decomposition for
tensors of arbitrary rank, n, which are completely symmetric under permutations
of their indices. The number of independent elements of such tensors is equal to
the number of different combinations of n indices, each taking values 1, 2 or 3. The
number of such combinations is given by the number of different ordered pairs of
non-negative integers (the number of 1’s and 2’s for example among the indices of
tisiy..in) Daving a sum not greater than n. This gives M = 1(n+1)(n +2).

Tt will be shown that, in this case, the transformations of the elements of t lead
to irreducible representations of degrees j1 = n, jo=n—2,..,JrR= n—2(R-1),
where R is the largest integer for which jg is nonnegative, i.e., B = 14n/2 for even

n and R = (n +1)/2 for odd n. In this case (2.117) becomes
(2n+1)+{(2n-3)+-+ (lor3)= %(n + 1)}{n+2) (‘.2.120)

In a right handed co-ordinate {rame (z,9,2), let €, €, € be the unit vectors
parallel to the co-ordinate axes. We shall regard these as constant vector fields
defined everywhere in space. Let us now consider a rotation of the co-ordinate
frame by an infinitesimal angle v about the z-axis, and let €', €,, €, represent the

anit vectors of the rotated frame. Then, to first order,

€ = €5 TE,
€, = €+, (2.121)
€, = €

z

Following the conventions of Edmonds [1960] we define the infinitesimal rotation
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operator J, such that, to first order:
A+iv)e: = €, — 7€,
(1+iyJ,)e, = €,+~v€s ' (2.122)
(1 + i'sz)Ez = (:'z'

Thus
Jzem = iéy
J.ey = ~—i€, (2.123)
J€, = 0

Similarly we define operator J,, J, such that:

Je€z =0 Jy€z = ~—1€,
Jo€y = 1€, Jyey =0 (2.124)
Jo€, = —1€, Jy€; = i€,

and operators Jy = J; & i.J, satisfying

Ji€, = e,
J:L:ey = iez (2125)
Jie, = Fe, — i€,

The vector fields €,€,,€, form a basis for the description of constant vector
. fields. A general procedﬁre for finding combinations of these vectors which transform
according to the canonical irreducible representations, whic.h will later be applied to
tensors of higher rank, is as follows (see Fdmonds [1960]).

Among all constant tensor fields of some given rank n and satisfying a given set of
symmetries, first identify all eigenfunctions of J, which are annihilated by J,. The
eigenvalues of J, are necessarily integers, ji, say and the eigenfunctions annihilated
by J; will also be eigenfunctions of J? = JZ 4+ J2 4 J2 = J_J, + J.(J.+1) belonging
to eigenvalue jx(jx + 1). Successive operations of J_ yields a sequence of functions
which simultaneously are eigenfunctions of J? belonging to the same eigenvalue and

eigenfunctions of J, belonging to eigenvalues jy—1, 7k ~2,..., —jx.
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Using the notation commonly employed in quantum mechanics, we shall write jx

and |jx jx k) for the k’th solution of the equations
Jelix dx k) = Jelik Jr F) | (2.126)
Jolik Jx k) =0 (2.127)

The number, R, of linearly independent solutions determines the number of irre- |
ducible representations. The simultaneous eigenfunctions of the k’th representation

are then given by the recurrence

ljr m=1k) = (G + m)(e — m+ 1) 7% x
Jlsmk)  (m=inik-1. . —iktl) (2.128)

where m is the eigenvalue of J,. The multiplying factor on the right side of (2.128)
ensures that all member of the sequence have the same norm. Since, in our case,
ljx m k) will represent constant vector or tensor fields we normalize according to
X tiiabivaein =1 (2.129)
i3 izysin
where + denotes complex conjugation. It is readily shown that solutions of (2.126)
and (2.127) having different values of jx are orthogonal. If there is more than one
solution for a given value of ji (e.g., i = j2) the eigenfunctions may be orthogo-
nalized, since any linear combinations of them also satisfy (2.126) and (2.127). It
may be shown that the recurrence (2.128) preserves orthogonality and, furthermore,

eigenfunctions of different m are orthogonal. Thus we have
(G m' K'ljk m k) = Sxprbmm? (2.130)

where the left side represents a scalar product of tensors of the form (2.128). We
shall term the set of constant tensor fields |jx m’ B) (k=1,2,..., Bym=—ji, —Jx +
1,...,j%) a canonical basis for tensors of given rank and satisfying given symmetries.
Such tensors may be expanded in the form

thTkmUk m k) (2.131)

km
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where, by virtue of orthogonality (2.130)
Tim={Jemkl-t={jrmk)-t (2.132)

Because of the manner of construction of the basis tensors {7, m k), Tirm transform
under rotations according to (2.116).
Let us now apply this procedure to the case of constant vector fields. It is easily

seen that among linear combinations of €, €,, €, only the vector

111)=ep = Jﬁ(_ez _ie)  (ii=1) | (2.133)

satisfies (2.126) and (2.127), where the phase is arbitrary and the multiplying factor
ensures |€4]* = €] - €4 =1 (cf. (2.129)). Employing (2.128) we find -

11 D= en = (-6 —ie)
1 0 1)= & = ¢ (2.134)
1 -1 )= e = J5le ~ie,)
Note, therefore, that
Jr€m = V2611 ' (2.135)

where €,, = 0 for |m| > 1.
Thus the canonical components of a constant vector field v are (cf. (2.131)

(2.132))

Vim=V"=¢€¢.v (m::——l,O,l) (2.136)

From (2.134) we find that V™ are given by

3
V=¥ 0 (2.137)
i=1
where C; are the elements of the matrix
i=1 =2 {=3
‘ —27% 273 0 = 1
Cl = (m=1) (2.138)
0 0 1 (m = 0)
27t 2% (m =-1)




we shall also refer to the quantities V7™ (m=-1,0,1) as the Cartesian contravariant

components of v.

Let us define spherical polar co-ordinates (7, 8, ¢) through the relations

= 1 sin 8 cos ¢
y = rsinfsin¢ (2.139)
z = rcosf

Under a rotation a=¢, f=40, v=0 the vectors €, €, €, of the rotated frame are

f
Z
parallel to the unit vectors in the co-ordinate directions: 8, ¢, T at the point (6, ¢},

and thus
(B -id) (m=1)
e =en(f,4)=F (m =0) (2.140)
\/“(9 ) (m:——l)

These are the covariant spherical basis vectors introduced by Phinney and Burridge

[1973]. A constant vector field v may be written:

3
v = Z Vi™e,, (2.141)
mm=—1 .
| o klon
where, from (2.116) W?B’UL e
£
Z’DSLU (4,6,0)V™ (2.142)

It is clear from (2.141) that V'™ coincide with the spherical coniravariant compo-
nents, v™ of v, in the sense of Phinney and Burridge [1973], at the point (4,9).
Using (2.142) and (2.115) we have

1

We
N = ™8, ) = Z (2.143)
mf=—1

This gives the expansion of v in generalized spherical harmonics.

In the preceding analysis we have defined Cartesian contravariant components
. .

=S Ol (2.144)

i=l

where v; are the Cartesian components of v, and spherical contravariant components,

which are given by
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3
v™ =Y ClL (2.145)

il
where ¥; are the spherical components of v (vj,v4,v,). These definitions may be
generalized to tensors of arbitrary rank; we shall write

Tmame .t Z 01::1{10:1

1152...0n

v Ol intivia i _ (2.146)

212

Rz Z C:ngﬁcz’tzfz R C:nninalfz---fn (2147)
f180...00 )
We have also shown (equation 2.143) that
1
v = S Y, SV (2.148)

mfwl
and thus we find
M Z}/}mxm (9’ ¢)y1m2uz(9, ¢) s }/}mnun(ﬁ, ¢)T.u1.u2--'un (2‘149)
s
The problem of expanding $™™2+™ in terms of generalized spherical harmonics:
e o % Y;-Nm(ﬂ, Y (N=my+ma+ - +m,) (2.150)
im
is that of expressing products of generalized spherical harmonics, such as those
appearing in (2.149), as linear combinations of other generalized spherical harmonics.
This may be accomplished by repeated application of the formula ( Edmonds [1960],
equation 4.3.2)

YPROOT08) = D T

imy My, ™Mo —MM
NnoJ2 J ) ‘
X }jm“(B,qB) (2.151)
By iy —p
However, it is very laborious to obtain concrete results in this way. It is much more
straightforward to first derive the canonical components T, of t and then to obtain

the generalized harmonic expansion of t by an argument similar to that leading to

(2.143). Here we carry out his procedure for fourth rank tensors satisfying the elastic

tensor symmetries, and then for completely symmetric tensors of arbitrary rank.

P
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First we note that the 3" dyadic products €m, €m; *** €ma) where each m; takes
values —1,0,1, form a complete orthonormal basis for the representation of constant

tensor fields of rank n. Furthermore, applying the “chain rule” we have
Jo€umy €my *** Emp = (my+mat+-- )€, Emy  * Emn (2.152)

Thus each element of the basis is an eigenfunction of J, belonging to eigenvalue NV =
my+mat - +my,. It follows that in seeking to constr_uct irreducible representations
by solving (2.126) and (2.127) we need consider only linear combinations of basis
tensors of uniform, nonnegative N. The result of Jy operating upon an element of

the basis is also given by the chain rule; using (2.135)

J£€m Emy tt Emp = \/—é ( EmiE1€my " €ma + €my €mak1 " Emyp

R -+ €mi€my """ Emn:!:l) (2.153)

where, as previously, it is understood that €, vanishes for jm| > 1. It may also be
noted that J operating upon elements of a given N, yields combinations of elements
the sum of whose indices is N+1. The ability to immediately rank the basis vectors
according to their J; eigenvalues makes it very simple to determine the degrees of the
irreducible representations involved in a given tensor transformation. Let us suppose
that there are py independent basis elements having S0, m; = N. If the most
general tensor of rank n is being considered, py is the number of different ordered n-
tuples of the numbers —1,0,1 having the sum N '; however if only tensors possessing
certain symmetries are considered (e.g., (2.118)) py will have some smaller values,
1t is clear that —n < N<n. The eigenfunctions [jx m k) will be linear combinations
of the py independent basis tensors having N =m. In the space spanned by these
basis tensors, there will be a subspace (Sown, say, possibly null) annihilated by Ji
and a complementary subspace (81w, say) mapped onto the space of dirension py 41
spanned by basis tensor having indices summing to N + 1. Thus the dimension of
Syn is equal to py41 and therefore the dimension of Son 1s PN —DPN+1 (N > 0). Each

element of an orthonormal basis of Son will solve (2.126) and (2.127) with jr = N,

!These py are obtainable from the generating function (z7'+142)* =3 N Npn
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and thus will generate, through (2.128), an irreducible representation of degree N.
Therefore the number of representations of degree N (> 0) is py~pyyr (this is valid
for N = n provided that we define py = 0 for [N] > n) and the total number
of representations is po. In order to apply this procedure to fourth rank tensors
possessing the elastic tensor symmetries (2.118) we first identify, by enumerating

them, the number of independent elements corresponding to each value of N, and

HM&C4 ps= TH+++ : 1—\ W
N=3 pa =1 TH++e '
N=2 p2 =3 THH00  PHO+0
N=1 py =3 000 pHd-0 pEet0
N =0 po =25 0000, p-t00 00—t opeted o (2.154)
N=-1 pu= T-000  p--40 40
N=-2 p,=3 T-% 7p-0-0 ==t
N

f""—-—__'_—‘—‘

=
il It
| |
M Lo
o~ .
L4
il 1
93
I |
N I
i o

Thus there is 1 (= pys - ps) representation of degree 4 (j; =4), 2 (= p» — p3)
representations of degree 2 (j» =2, j3 = 2), and 2 (= py—p;) representations of
degree 0 (j4 = 0, j5 = 0). Appropriate orthonormal basis tensor fields are |N i)
(N =~4,-3,...,4;i=1,3,...,pn) given by

| 4 1) = €4q44
| 3 1) = 473 (€qrotrsor+Erors +E0sss)

| 2 1) = 27 (e4400+€001+)

! 2 2) =~ 4-%(€+0+0+60++0'§‘€+0{)++€0+0+)

1
| 2 3) =42 (€344-t€ssy T 1 TE44y)

fam—y
o

) = 4_%(5+000+50-§-GD+600+0”’(’"€000-§«)'
| 1 2) = 472 (€44—0+€qs0-F €04t E0mis)

1
I 1 3) =872 (€1mrot€ttot€ros € yor TEr05- T €10t €0ttt E0p—t)
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| 0 1) = €oooo

| 0 2) = 475 (e_so0+€4—00+ €00+ +€00+-) (2.155)
| 0 3)= 8“%(€mo+o+€om+n+€»oo++€o-0++€+o_o+€+eo_+Ee+_{>+€o+o—)

| 0 4) =275 (ecprHeri--)

| 0 5)=43(€ ot ey tepptEr i)

|-11) = 4"%(€-ooo+60~oo+foo~o+ﬁooo-)

|1 2) = 473 (e—_ 4o+ €0t +€40-~+E0s—-)

[~13) = 8"%(e~—+—0+€+——0+5-—+0~+€+-—0—+€m0~++€-o.+—+€ow++€o-+-~)
|21} = 273 (€.....00+ €00 )

|-22) = 4”%(&0—0—1—60"04— €..00— +€0-0-)

|-23) = 45 (e_ooptepteyFEr )

| -3 1) = 475 (e___gt€ o +E ot )
) =

j—41) =€

where we have used the notation €i_op = € 1€3€ o€ ¢ etc. We may also write
[ 1) = Wi €y pppape + - ) WheTe Wiy fh1, pl2, p3, fig BTE those given in Table 2.5,
and where the ellipsis indicates a sum over all different permutations of the indices
related to the first element by symmetries of the form (2.118). There are 21 (= ¥ pn)
basis tensors in all, corresponding to the 21 independent elements of ti;m.

Solutions of (2.126) and (2.127) may now be sought in the form
|7k Jk k) = Z 7k $)(Jk 2ldx Gk k) . (2.156)
employing the relation
Jp|N &) = ):|N+1 IUN+1 F|JN 1) (2.157)
i
whence {2.127) becomes

20kt 1 1 bk )ik 1k i k) =0 (2.158)
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The matrix elements (N +1 j|J4|V i) may be found by operating with J4 on the
basis tensors |V 4), using (2.153). The complete set of matrix elements relevant to

this problem are found to be

(N4L 314N §) = (=N i|Jy] =N-1j) = (N 2|J- [N+ §)
= (N1 =N i)

22 (N =3)
2
12 (N =2)
V2
(9 2v2 0 |
2 0 V2 (N =1)
= 4 (2.159)
0 2 2
27 0 0 |
V20 2
2 2 V2 (N = 0)
0 2 0
L 00 2

where on the right side ¢ = 1,2,...,pn Is 2 row indexand j = 1,2,...,pN41 35 2
column index.

Having found the appropriate number (pjk——p;k“) of orthonormal solutions (fk {7k Jx &)
of (2.158) and constructed [jk J k) using (2.156), other elements [jx m k) may be

constructed using (2.128), giving tensors of the form
!jkmk)=2|m i)(m t{je m k) (2.160)

In practice it is somewhat simpler to calculate (jx iljx jx k) using the fact that

l7k jx k) 1s orthogonal to |je jir &’ ) for ji # jx, which leads to the requirement

S (e Jre KLk 1)k ik i B) = 0 (i > Jx) (2.161)

Table 2.5 gives values of (m i|jx m k) calculated in this way. Note that the first
column (k = 1) is generated by applying (2.128) repeatedly to €444+ Then the two
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3-vectors heading columns k=2, k=3 are chosen to be orthogonal to one another
and to the corresponding 3-vector of the first column. Then the remainder of col-
umn k=2, k=3 are generated by application of (2.128). Similarly the two 5-vectors
heading column k=4, k=5 are chosen to be orthogonal to each other and to the
corresponding 5-vectors of all columns to the left. For each m the nonvanishing vec-
tors form a p, Xpy, unitary matrix. It is clear that there is a degree of arbitrariness
in the choice of columns 2 and 3 and columns 4 and 5. In this example it has been
resolved by choosing columns 2 and 4 to represent completely symmetric tensors.
Of necessity, column 1 also represents completely symmetric tensors. This decormn-
position into completely symmetric tensors of degrees 4,2,0 and orthogonal tensors
of degrees 2,0 is the same as that obtained by Backus [1970]. An alternative de-
composition into “compressional” and “shear” components, suggested by Mochizuki
[1988], may be obtained by taking the following orthonormal combinations of the

columns of Table 2.5:

compressional, degree 2: — \/g X [k = 2]+ \/g X [k = 3]
shear, degree 2 : \/g X [k =2]+ \/g x [k = 3]
compressional, degree 0 : \/g x [k =4]+ \/g X [k = 5]
shear, degree 0 : \/g X [k=4] /3 x[k=5]

The expansion in generalized spherical harmonics of fourth rank constant tensor
fields satisfying (2.118) can be obtained by an argument similar to that leading to
(2.143). Let t represent such a tensor field; t may be expanded in terms of the
canonical basis tensors

t = ZTkm[jk m k) (2162)
km
‘The basis tensors given by (2.160) may be written
l7x m k) = Za£:n#2“3p4£#:u2nan4 (2-163)
s

where the coefficients of/**# satisfy the selection rule

O ¥ =0 i g prbpa+ pabpa (2.164}
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The values of these coefficients are obtainable from Table 2.5. Making use of the

orthonormality of the basis tensors

(Jrr ' '{ji m k) = Spps bonpnr (2.165)
and the relation

€ €4 = Oy ' (2.166)
(2.163) can be used to obtain the unitarity condition

zamnwsm QFHRHIB o § 6 : (2.167)

From {2.162), (2.163) we find that the Cartesian contravariant components of t are

Trs2Hs b z Tiom Q112 HH (2.168}

km

and using (2.167)

Tkm - Zag:nuz#waTm#zuw; (2.169)

s
As previously, we now employ the known transformation properties of Tim (see,
(2.116)) to write the spherical contravariant components of t in the form (cf. (2.142)

and (2.143))

akabsss = 57 Dins(,6,0) Tt (2.170)

kmm!

Hence, using (2.115) and (2.164), the expansion of t in generalized spherical har-

monics is given by

$HIHRBIB z t#wz.uamYNm 8, ¢) (2.171)
with
A G
praB2bsae Z 1 H1H2ita bs e m,e’\-\if 2.172
im = km QX } I N { W o ( ’ f._.)
k s D QA ok
Tt £y [ \I_{"’\T._
C}$ : ¢ - ¥ 5 ) 5
j SR s
N {/ DWH’ ‘f\l . N M}\“/)
U’ Jﬂi\;’_{&.
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where N = p; 4+ py+ ps+ ps. Equations (2.171), (2.172), (2.169) give the generalized
spherical harmonic expansion of t.

In what follows we shall require a similar decomposition for completely symmetric
constant tensors of rank, n. A basis for such tensor may be formed from dyadic
products €m, €, * « + €m,,, completely symmetrized over their indices. Such symmetric
products are completely characterized by specifying the number of 1’s, the number
of 0’s, and the number of —1’s among the indices m;,ms,...,m,. Denoting these

by ny 20,10 2 0, n_. > 0, we have
ny+notn.=n (2.173)

and the corresponding basis tensor will be an eigenfunction of J, belonging to eigen-

value
N=ng—n_ (2.174)

The number of independent basis tensors corresponding to a given value of N is
equal to the number of different triplets of non-negative integers (n_,ng,n,) sat-
isfying (2.173), (2.174); i.e, py =1+ent L(n—|N|). As previously, the number of

representations of degree ji, = N is

1 fn—Niseven :
PN — PN41 = (2.175)
0 if n—N is odd

Thus we have a total number py of representations, having degrees j; = n, j, =
n-2,..., Jp, =1 or 0. Since the degrees are all different, the canonical basis |7, m k)
is essentially unique. In the forthcoming application of this result it will prove to
be unnecessary to know the precise form of the canonical basis tensors, although
it is straightforward to find them. In order to indicate the rank of tensors which

comprise these bases we shall use the notation |j;, m ¢ n), where j,, = n — 2¢.

2.5.2 Expansion of analytic tensor fields

Let 2i,4,i54, represent the Cartesian components of a tensor field satisfying {2.118)

which is analytic in the unit sphere centered at the origin. Thus is has a convergent

]
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Taylor seriesin 0 <r < 1t

. 49 .
biyigigis = liiigiaiy T Z$:sti1i2£3£4,55
is

1 2
+§ Z x"fﬂx"fit'(lt):fsfhfsfs +ee (2176)
1518
where the constant tensor fields t(®) are the n’th derivatives of t at the origin. In

spherical contravariant form we have

oo .n

Y - ’; %t(n)nmwamm--.ﬂ (2_177)
where there are n vanishing indices of t). The constant tensor fields t(" possess
the symmetries (2.118) with respect to their first four indices and are completely
symmetric with respect to permutations of their last n indices. A basis for the
expansion of such fields is provided by all products of the form [jx m k)|jsn m' ¢ 1)
where the first factor is a fourth rank tensor from the canonical basis appropriate
for tensors having symmetries (2.118) and where the second factor is 2 member of
~ the canonical basis for symmetric tensors of rank n. Thus from the analysis of the
preceding subsection ji takes the values 4,2,2,0,0 (k = 1,2,3,4,5) and 7, takes the
values ﬁ-~«2q (¢ = 0,1,...,ent %) (see above). The problem of finding a canonical
basis appropriate to the symmetries of (" is that of recombining these products
of basis tensors into a new canonical basis. That is: we seek the decomposition
of the Cartesian product of irreducible representations of degrees i, jon into other
irreducible representations; this is equivalent to the problem of coupling of angular
momentum in quantum mechanics [Edmonds, 1960] and the solution is well known.
The product tepresentation reduces to a set of representations of all degrees, 7,

satisfying the triangle inequality:
Uk "‘jqnl SJ Sjk‘i’“jqn (2.178)
The canonical bases of these representations are given by

lj mkgn)= Z e M’ B)ljgn m” g n)(ik m' jon m"|ik Gon § ™) (2.179)

ml‘m.ﬂ'
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where (jx m' jgn m"|jk jon J M) are the vector-coupling coefficients [Edmonds, 1960].
The tensor fields of rank n + 4 represented by (2.179) form a canonical basis for
the expansion of (™). A representation of specified degree, j, will be generated by
coupling each representation of degree jx with a representation of degree jgn = n—~2¢

for all k and ¢ (> 0) satisfying

i — sl <7 =29 < § + s | (2.180)
Equation (2.179) may also be written

mkgn) = 3 lixm' k)ljga m" g n) x

mlmﬂ

. ] — ]
(~1pemtmi )b | T T (2.181)

m' m" -m

where the vector-coupling coefficients have been replaced by their representations in
terms of Wigner symbols.

Corresponding to (2.163}, let us now define coefficients )72, 8772,", and

Vhamim L4 through
|7 m' k) = Zai:n%wwifnwwam (2.182)
o .
lgn " g n) = ;ﬁ;’;ﬁiﬁ”"evm...yn (2.183)
limkgn)= Z; Veamim T € s s parn v (2.184)

From (2.181) we have

M2 M3 MavE gty B1p2E3He QUsPeetn
7kqnjm - Z Q! gnm" x
mlmﬂ'
Jk n—2¢ ]

m' m” —Tr

B s

(=125 4 1) (2.185)

As in (2.171), we may use the coefficients v to expand the terms of (2.177) in

generalized spherical harmonics:

t(n)u;uzusmUO---O . Z T(n) 7“‘”2”3”400---O}/jN"‘(9,¢) (2.186)

kgim TheniN
kgim
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for some coefficients T 7™ where N = 1+ po+ pa+pa. Thus, using (2.185)

kgjm*
M) p2pape00..0 lsgg)m B1 243 B4 325'0(—1)j*“”+N(2j + 1)% «
kgim
9 .
R P XD
N 0 ~N
= 3y kwmaﬁ}é""”‘*“‘(?n —4q + 1)% P
kgim
. n—2¢ J ~
(¥ | 7 T gNne, ) (2.187)
~N 0 N
where we have employed the symmetries of the Wigner symbols, and defined !
T = T % 0(=1) " (4m)3 (2n — g +1) (2.188)

and where we have used completely normalized generalized spherical harmonics

which are defined in (2.37) and satisfy

/ PN(0, )TN (8, 4) sin 6 ddp = 83 Smm (2.189)
In (2.189) integration is over the surface of the unit sphere. Using the unitarity
condition (2.167), together with the relation

/ . ~ . \ / . Ly . \
— n—
N ( jN ' qu j\l;) L JN OLq j]:;J = (2n—4g+1)7 6y (2.190)

(equation 3.7.8 of Edmonds [1960]), it may be shown that (2.187) represents a sum

over tenmsor fields which are orthonormal on the unit sphere, i.e., representing the

left side of (2.187) as the components.of a fourth rank tensor £(m)0,

] EOPP2 sin 8dodg = 3 [Teor P (2.191)
kgjm
We may also write (2.187) in the form
t00 = 3T 00, ) (2.192)

kgim

'If B0, vanishes the number of independent coefficients T may differ from the number of
coefﬁments T. It may be shown, however, that for all ¢, 7 {0 < 2¢ < n) 8057 # 0. We omit the

demonstration of this.
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where tensor fields Ti’;zn (6, ) have spherical contravariant components
Jeom
-N 0 N

ngfxnwsui — aﬁj\f‘wsm(?n + 1)%(,_,_1)1\’ ( ) ?ij(@,qﬁ) (2.193)

Substituting into (2.177) we obtain the expansion

s n n-—
i LT L R— Z Z ——lﬁq_),-m T&jmgq)(e’ ¢)

im kqn TV

n+2¢
™ T t2) 2.194
;;Zﬂ:‘rhm( :qs)}q:: (n_§_2q)! kgim ( . )
In (2.194) the summation indices are subject to the selection rules
g20 l-@lsngj+i  15k<5 (2.195)

For different values of 7, &k, m,n, the orthonormality of TE:) guarantees that the

m
corresponding terms in (2.194) are orthogonal. We now seek to orthogonalize the
functions r"*% (¢ = 0,1,2,...) respect to radial integration; i.e., we seek polynomials

Ry of degree ¢ such that

1
]0 PP R (r2) R (r2)rdr = S (2.196)
Writing p = r?, we require
1 1 nw}-‘— 4 n ~
| 50 By(e) By (o)de = & (2.197)

This is the defining relation of the Jacobi polynomials Gy{n+3/2,n+3/2,0) on
the interval p € [0,1] [Abramowitz and Stegun, 1965] subject to the appropriate

normalization. G, satisfy

L *(g+1)["*(q+p)
P1G.(p, p, 0)Go(p, p, 0)do = 6,00 2.1
fﬁ 0" Go(p, p, 0)Gor(p, s 0)de = &g (%2 + p)T2 (204 7) (2.198)
Thus we write p = n+3/2 and define
4g+2n+3)31(2 3/2
Ri(e) = YaF I3 TQa4nt3/2) o oo niasa, o) (2.199)

T{g+ )T {g+n+3/2)
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Using the relation between G, and the Jacobi polynomials Pl (29—-1) [Abramowitz

and Stegun, 1965}, we may also write

R}(r*) = (4q-{—2n+3)2 (**—)(27.2_1)

_ (4q+2n+3) g Mn+g+m+3/2) ,.
T T(g+1) E)( 1 (m) M(n+m+3/2) r (2:200)

where (;‘;) is the binomial coefficient. Equation (2.194) becomes

prapats zzzzfi’;gz T I ¢5) ’5;33 (2.201)

for some coefficients T,ij,? , where T(kf;fi(T 8, ¢) are tensor ﬁeids ha,vmg spherical con-

travariant components

rGaa = Ol ()T (0, ) (2.202)
with
CLasg™™(r)
o ™ (4g+20+3)} P(O i )( (2.203)
and satisfying the ortho;lormahty relation -
[ el = G855 b (2.204)

wn
.

where the volume integration is over the unit sphere and where “.” signifies contrac-

tion over all tensor indices. In (2.202) N = py+ pia+p3+ . |
(nq)

The indices n, g, k, 7, m which specify a particular tensor field ., satisfy selection
rules
1<k (r=42,20,0)
e=ilSn<ik+]
g=20 ' {2.205)
i20 "
~j<m<j
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For a given spherical harmonic component (j,m) it is of interest to determine the
number of independent basis tensor fields containing a given power of 7, r¥, say, and
lower powers. This is given by the nuniber: of different triplets (k,n,q) satisfying
(2.205) and also satisfying

n+2¢=v (2.206)

For low values of v and j the allowed triplets are shown in Table 2.6. Table 2.7 gives
the total numbers, nj,, of such triplets for a larger range of v and ;.

In general, it may be shown that n;, satisfy the recurrence

iy = Njua + Puej = Putitl (2.207)

where py are those given in (2.154) (pn is defined to be zero for |N| > 4). Equation
(2.207) may be used to generate all n;, using starting values n; ; = n; » = 0. It
may also be shown that, for sufficiently large v, n;, reach limiting values, for odd

and even v, as follows

. 5 j—v even v>4
JZO njvﬂ

0 j—v odd r>1

8 j—v even v>5
jﬂ}. U ]

3 j~v odd v2>4
) i1 J—Vv even vz26
j=2 T == (2.208)

6 j—v odd v>5
) 12 j—v even v>T
3:3 nju':

7 j—v odd v>6
. 13 | — v even v>i144
izd my= ’ =7

8 j~v odd v>ji+3

Thus for large j and v (¥ > j +4), the condition of analyticity at the origin requires
that the 21 degrees of freedom for each j,m be “shared” between even and odd
powers of r. For small j, v the condition of analyticity reduces the number of degree

of freedom substantially with respect to these limiting values (see Table 2.7).

56




Table 2.6: Allowed Triplets (k,n,¢) for Some v and

j=01j=1|j=2}|=3j=4|j=5H j=56
r=0| 40,0 2,0,0 1,0,0
5,0,0 3,0,0
v=1 21,0 1210111010 1,10 1,10
3,10 ¢ 31,0 | 2,1,0
4,10 3,1,0
51,0
v =21 4011220 201 ] 1,20 | 1,01 ] 1,20 | 1,2.0
5.01 320|301 1220/ 1,20
2,2,0 12,0 | 3,20 | 2,20
3,2,0 2,2,0 3,2,0
3,2,0
4,2,0
5,2,0

v

Table 2.7: The Total Numbers, n;,, of Allowed Triplets (k,n,¢)

J=0|i=117j=217=38|j=4|j=5|j=6]7i=T};=8
v=0] 2 0 9 0 1
v=1| 0 4 2 3 1 1
v=2| 4 2 7 3 4 1 1
v=3| 0 7 5 8 4 4 1 1
v=4| 5 1 3 | 10 | 6 9 {4 | 4 | 1 | 1,
v=5| 0 | 8 6 'l 7 9 4 4 | 4
v=6| 5 3 11 7 12 7 9 4 4
y= 0 8 6 12 8 12 7 9 4
v=8| & 3 11 7 13 8 12 7 9
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2.5.3 Basis tensors which contribute to splitting

Tt has been shown in (2.201) that a general analytic elastic tensor field may be
expressed in terms of the basis tensors (") However not all of these bases can
cause the splitting of normal modes. First of all, it is easy to verify that " with
s odd give no contribution to splitting. In addition we have shown in 2.3.3 that any

tensor A whose components satisfy
N W (2.209)

contributes nothing to splitting. Here we show that all basis tensors for which n+ s
is odd satisfy (2.209) and thus do not contribute to splitting. From Table 2.5, we
find that of1¥?##* in (2.203) have the symmetry property

az}vgzﬂa;ué o a;ij\!—ﬂz"#a—‘ﬂ-i . (2.210)
where N = py+ o+ p3+ p4. Thus from the definition (2.203}, we obtain

ﬁ;ﬁ:ﬁiam - (__1)n+scf’:nk;13—#2—na—-#4 (2.211)

where we have employed the fact that j; are always even and a property of the 3-3
symbols (see equation (3.6.7) of Edmonds [1960}), i.e.
h J2 J3 _ (,,,1)-7‘1+j9+53 h j2 73 (2212)
mi ™y Ma —my —My —m3
Equation (2.211) shows that the basis tensors 7" with n + s odd satisfy the con-
dition (2.209). This implies that the basis tensors 'ng) may be partitioned into two

categories: those with both s and n even span the subspace in which any non-zero

tensor has effects on the splitting of normal modes; the remaining basis tensors span
" the subspace in which no tensor contributes to splitting.

Since in this thesis we limit attention to low-degree (spherical harmonic degree
s < 4, radial expansion up to degree v = 2) elastic tensor flelds, it is only the
20 triplets at the intersections of the columns j = 0,2,4 and the rows v = 0,2 in
Table 2.6 which are needed in the inversions performed here; when the spherical

perturbations are ignored the number of unknowns reduces further, from 20 to 14.

g,ﬂ -6 - 1Y
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Chapter 3

Inverse Theory

In this thesis inverse problems are encountered in several contexts. For example,
we invert for the splitting function coefficients, cy, from a collection of observed
seismograms, u(t), by virtue of relations (2.6) and (2.8). This is a nonlinear, dis-
crete inverse problem. Another inverse problem is defined by (2.12): retrieving the
three-dimensional structure of the Earth, émg(r), §h%,, and &thy(r), from the split-
ting function coefficients ¢, of many multiplets. Clearly this is a linear coniinuous
inverse problem. Using a finite collection of data, one is limited to solutions of finite
resolution which are smoothed or filtered versions of reality, namely one can only
invert for a discrete set of parameters which approximate the continuous functions
dmy(r) and dmmg(r).

Without loss of generality, the inverse problems arising in this thesis may be
stated as follows: we seek a discrete set of parameters, represented by model vector

%, satisfying

d=1f(x)+e
Bx— g (3.1)

where the first equation is the basic equation and the second one imposes an addi-
tional constraint, which could be trivial. In (3.1) vector d is a collection of data of
dimension N, the function f could be either linear or nonlinear, the vector x has

finite dimension M, vector e represents stochastic errors associated with d, matrix
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B has dimension of N’ x M with 0 < N’ < M, and g is a known vector of dimension

N’. For N’ =0, the constraint Bx = g is trivial.

3.1 Stochastic Solution of the Inverse Problem

One general way to solve the inverse problem (3.1} is to employ a stochastic
formulation {Jackson, 1979; Tarantola and Valette, 1982; Gubbins and Blozham,
1985]. We assume in what follows that the errors e are independent samples from a
normal distribution having zero mean and variance o?. The data covariance matrix
C. therefore is the diagonal matrix having all diagonal entries equal to 2. We
also assume that when the constraint Bx = g is'ignored the model parameters x are
Gaussian variables and have a priori mean value xo with a certain convariance matrix

C;. Under these assumptions, the posteriori probability distribution of model vector

X is given by
P(x) o exp{—}(E(x) ~ )7 G (f(x) — d)} x 52
exp{—3(x — x0)" C7}(x — o)}

This relation indicates that the maximum likelihood solution to d = f(x) + e is

obtainable by minimizing the objective function
B(x) = (f(x) = d)"C7M(f(x) = d) + (x ~ x0)TC;} (x — xo) (3.3)

The minimum of ®(x) subject to the constraint Bx = g is found by the iterative

application of the recursion

Xip1 X
A 0

[ ATCIM(d —f(x) = C5 (x - Xo) J

-1

ATCIA; + ¢t BT
B 0

(3.4)

| g — Bx;

~where A is a vector Lagrange multiplier of dimension N’, and A; is the N x M

matrix of partial derivatives

_of(x) _
A= [ ™ L:‘Xi (3.5)

60




In this study the a priori model X, is always taken to be zero. Namely we are
always seeking the solutions which are small perturbations from a known spherical
reference model. Correspondingly the model covariance matrix C: quantifies the
strength of our desire for smallness of the model x. And matrix Gy can always be
diagonalized provided x is chosen to be associated with orthogonal bases. Thus (3.4}
becomes '

Xit1 [ x; ATC'A; +C' BT

+ X
A 0 B 0

b

[ ATOMd - £(x,) — O3

1l

(3.6)

A g — Bx;

where ¢ is the parameter which quantifies the overall strength of the desire for the

smallness of the model, and C, is now diagonalized and has diagonal entries equal

too? (:=1,2,...,. M ); o: specify the relative strength of each model parameter Z;.
For the linear case, f(x) = Ax, if we assume that the strength of the desire for

smallness of the different 'components, 1;, are the same (i.e., set oy =1 for all #’s)

and if the constraint Bx = g is removed (i.e., set N' = 0), (3.6) may be simplified
by setting x; =0

x = i1 = [ATA + T 7'ATd (3.7)
which is the well-known damped least-squares solution with ¢ being the damping

parameter.

3.2 FError and Resolution Estimates

Since the concept of resolution does not easily extend to nonlinear problems, we
analyze resolution only for the linearized problem in the neighborhood of the model,
Xo0, 1o which (3.6) converges.

Let us suppose that we have obtained a solution x; in the neighborhood of Xe..
We may introduce a variation of the mbdel, §x, which would cause the variations of
data d and g by éd = Aéx and ég = Béx with A = Ao, Thus the variation of our

solubion ;41 is, according to (3.6), given by
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§xi1 = (GWATCITA 4+ GPB)sx (3.8)

where the M x M matrix GO and the M x N matrix G® are submatrices defined

through

-1
ATCI'A; +¢C;t BT
- [ s e +< z : (39)

GEB GM B 0

GH G® J

where G®) and G are, of necessity, N’ x M and N’ x N' matrices, respectively.
The resolution matrix R of our inversion may, therefore, be defined by virtue of

(3.8):

R =GWATC 1A + GUB (3.10)
The resolution parameter R = tr R — N/ represents the effective number of degrees
of freedom of the solution [Gubbins and Blozham, 1985].

Similarly the linearized analysis yields the covariance matrix of the model] sampling

distribution which, according to (3.6}, is given by

O%i41 0% 41 g (1) A T =1 (1)
E( ad el - '-—gam-e ):“—-«G A Ce AG (3}'1)

where () denotes the expectation of the enclosed quantity, and we have used the
fact that (e - e’) = Cq and that G 5 5 symmetric matrix.
In order to evaluate the matrix C, the diagonal entries o of the data covariance

matix C, may be estimated a posteriori from the formula
2 _ (4= £(0)7(d - £(x) ;
o, = N—R (3.12)

Taking C as the covariance matrix of the solution

C = (fx - 6xT) = S? (3.13)
individual model parameters z; will have standard errors:
1
éz; = [S22 (3.14)

If linear functions of the model parameters are computed, z = FTx, say, where F
is any matrix of M rows, then the covariance matrix of z, which we denote S% is

F-3

given by
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S? = FTSIF (3.15)

In the nonlinear case z = 2(x) the covariance matrix S? may be approximated by

using a linear approximation to 2 in the neighborhood of x, again yielding
S? = FTSZF (3.16)

where the elements of F are

Oz,
Fij = Fij(x) = "é% (3.17)

Note that the posteriori model covariance matrix C and the resolution matrix R,
and thus the error and resolution estimates, are calculated for the given a priori
information ¢ and o;. The dependence of the results on such information, especially
on ¢, can be very strong for underdetermined inverse problems. In such a case,
the error and resolution estimates become very conditional. The lack of a priori
information, corresponding to imposing small ¢, can lead to a large uncertainty in
the solution. On the other hand, imposing strong a priori constraints (i.e., choosing
¢ too large) will result in unrealistically small error estimates. In an extreme case
where the parameter ¢ is set to infinity, the solution x vanishes and so do the
estimated errors, no matter what the data d is. In this case the resulting model is

independent of the reality which it describes, i.e., the resolution is zero.
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Chapter 4

Data Selection and Processing

In this study we consider only spheroidal modes, and our analysis is limited to
modes which display little or no coupling with other modes and which can be readily
identified in individual spectra. The choice of uncoupled modes implies that their
splitting properties are sensitive only to the even-degree part of the Earth’s lateral
structure.

We retain a mode for further analysis if a window in the frequency domain can
be takeq such that the multiplet is the only one of significant amplitude in the
window. Very long period modes are, of course, primary candidates because of their
separation in the frequency domain. It is also possible to retrieve high-quality data
for shorter period, high-Q overtones, either by using data from deep earthquakes,
by which such modes are preferentially excited, or by discarding the first portion of
the time series, so that other unwanted, low-Q modes have largely died away.

Even by combining these techniques the number of modes that can be effectively
isolated is small, and we consider also frequency windows containing overlapping
multiplets. The singlets of such modes interfere to produce a single pattern in the
frequency domain, and thus the inverse problem for the splitting functions has to
be posed simultaneously. At this stage we limit consideration to frequency windows
with no more than two overlapping modes, making it easier to test for the presence
of coupling and for the correct identification of the singlets.

We have also sought to choose multiplets having differential kernels which sam ple
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the Earth in a variety of different ways. Thus we have examined all the modes with
periods between 200 and 2000 s, in an effort to obtain multiplets lying on modal
branches sensitive to different regions of the Earth’s interior. In addition, we have
included all identifiable multiplets having high sensitivity to core structure, since
many of these are anomalously split and those which are not are equally valuable in
attempting to identify the phenomenon responsible for anomalous splitting.

In all, we present here results for 34 spheroidal modes. They are arranged by
frequency in Table 4.1, which also gives their frequencies, @ values, and the ellipticity
(A) and Coriolis (B) splitting coefficients computed for the PREM model. The

coefficients A and B are defined as
A = laey + o/ QWP /2 (4.1)
B = BQ2x (4.2)

where &, o, and § are the splitting parameters used throughout this thesis (see
(2.8) and (2.13)) The modes span the frequency interval between 0.5 and 5 mHz,
and illustrate the predominance of rotational splitiing (high B) at low frequencies

and eili;pticity splitting (high A) at higher frequencies.

4.1 Data Selection

The analysis of long-period free oscillations requires the use of very long recordings
produced by large events (Mo > 5 % 10**Nm) and recorded by instruments with high
sensitivity. The degree to which the goal of obtaining dense geographical coverage
by stations and sources can be realized is limited by the fact that digital recordings
are available only for events since 1976, and for a relatively srﬁall number of stations;
also, events of the required magnitude happen, on average, only once a year.

The most abundant digital data for long-period analyses are the vertical accelero-
grams recorded by the International Deployment of Accelerometers (IDA) network
[Agnew et al., 1986], which allow the detection of free oscillations at frequencies

below 1 mHz for earthquakes with My ~ 10**Nm. We have also examined digital
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Table 4.1: List of the Multiplets Included in This Study

Mode | f, uHz Q A, uHz B, pHz || Mode | f, uHz Q A, uHz B, uHz
053 468.564 417  0.106 2.168 15s 1 1799.314 379 0.960 0.771
0S% 647.082 373 0.204 1.189 453 | 2048.963 480  1.343 0.848
05z 840.439 356  0.320 0.710 253 | 2040.206 198  1.421 0.790
153 939.829 283  0.759 2.480 553 | 2169.655 292  1.206 0.779
aSt 043.944 820 0.256 1.602 457 | 2279.598 290  1.434 0.538
055 | 1038.233 347  0.448 0.425 557 | 2379.519 489  1.531 0.671
28; | 1106.213 367  0.682 1.620 595 | 2703.354 502  1.734 G.654
155 | 1172.854 271 0.924 2.287 3S; | 2819.644 264  1.794 0.040
657 | 1231.812 342  0.585 0.227 653 | 2821.724 426 1.528  -0.137
285 | 1242:187 415  0.789 0.830 595 | 3010.690 3506  1.937 0.625
19 | 1370.274 292 1.006 1.968 953 1 3554.979 778 2218 0.190
257 | 1379.194 380 0.873 0.392 1052 | 4032.362 192  1.897 0.788
255 1 1514.927 302  0.979 0.245 657y | 4210763 354  2.697 0.412
185 | 1522.041 346  (.993 1.336 1154 | 4766.867 702  2.787 0.055
05 | 1578.298 333  0.891  -0.016 1352 | 4845.261 879  3.18% 0.145
157 | 1655.516 372  0.974 0.939 1S5 | 5074.411 665  2.658 0.019
25¢ | 1680.839 238  1.147 0.566 1353 | 5193.822 909  3.156 0.128

Frequency (f), Q, ellipticity (4) and rotation {B) splitting parameters are computed for the refer-
ence model PREM. 4 and B are defined in (4.1) and (4.2). Modes sensitive principally to structure
in the mantle are indicated by an asterisk.
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data recorded by the Global Digital Seismograph Network (GDSN; Peterson et al.
[1976]). While the currently implemented instrumental responses of these networks
are not comparable to that of IDA at the Jongest periods, they record horizontal as
well as vertical components and have the potential therefore for providing uniquely
valuable information for toroidal modes. The results presented here have been ob-
tained using only IDA data.

We use recordings collected for 10 large earthquakes that occurred from 1977
through 1985, covering all the major seismic zones, and including the events of
August 19, 1977, in Sumbawa (Indonesia, Mo = 3.6 X 10 Nm), June 22, 1977, in
the Tonga Islands (Mp = 1.4 x 10**Nm), and March 3, 1985, in Valparaiso (Chile,
M, = 1.0 x 10%Nm). Very few large, deep earthquakes have been recorded since
1977; the largest was the Banda Sea event of June 22, 1982 (Mp = 1.8 x 10°Nm).
Table 4.2 lists the events with their locations and seismic moments. The source
mechanisms of these events are shown in Figure 4.1. We have not used data for the
September 19, 1985 Michoacan (Mexico) event or for any other event followed by
aftershocks of moment comparable to that of the main event. Although the modal
excitation of multiple sources can be easily dealt with in principle, it introduces
further uncertainty in the phase equalization, and we have therefore omitted such
events at this stage of the research.

In the generation of synthetic seismograms we make use of the moment tensor
solutions computed with the centroid-moment tensor (CMT) method [Dziewonski
et al., 1981; Dziewonski and Woodhouse, 1983]. Seismic moments are listed in Ta-
ble 4.2. A point source is assumed in computing modal excitation, and we use
the CMT centroid time to account for the temporal extension of the source pro-
cess of these large events. The CMT solution characterizes the source mecﬁanism
at periods between 40 and 200 s, much shorter than the periods of many of the
modes under study, and comparable with the duration of the larger of the events;
this is a potential source of uncertainty, and the adequacy of the CMT solutions at
much longer periods requires verification. By analyzing very long period IDA data,

Riedesel [1985] found a very close correspondence between CMT solutions and very
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Table 4.2: Date and Location of Earthquakes

Date Region  Latitude Longitude Depth, km Mo, Nm Correction
Jun 22, 1977 TongaIs. -22.9 -175.9 65 1.39 x 10 1.089
Aug 19, 1977 Sumbawa Is. -11.1 1185 30 3.59 x 10% 1.009
Mar 7, 1978 South Honshu 32.0 137.6 434 5.38x 10" 1.003
Dec 6,1978  Kuriles Is. 446  146.6 181 6.40 x 10%®  0.774
Dec 12, 1979  Ecuador 1.8 -79.4 20 1.69 x 10%*  1.265
Apr 13,1980 TongaIs. 235 -177.3 166 2.84 x 107° 1017
Jul 17, 1980  Santa CruzIs. -12.5 1659 34 484 %102 1314
Jun 22, 1982 Banda Sea 1.3 1260 473 1.77 x 102 0.906
Mar 6,1984 South Honshu  29.4 138.9 446 1.44 % 10°°  0.907
Mar 3,1985 Central Chile -33.2 -72.0 41 1.03 x 1020 0.947

The seismic moment (Mo) is that cbtained using the CMT method. The multiplicative

scalar correction to the seismic moment is retrieved in an earlier stage of this study based

upon the data of 27 modes [Giardini et al., 1988].
long period moment tensors, and we have obtained similar results by inverting our
data for source parameters rather than for modal perturbations. Nonetheless, this
remains a potential source of error in the computation of very long period synthetic
seismograms. In Giardini et al. [1988], we have made an effort to invert for the
corrections to the scalar moments by using most of our modal data (27 modes). It
has been found that the resulting corrections prove stable and are generally almost
negligible (~ 10%, smaller than the noisé level). In this thesis we shall simply adopt
these reported corrections, which are also listed in Table 4.2. |

In general, we retain only modes for which at least 20 or more station-source pairs

can be used. It will be shown later that this quantity of data is sufficient to provide

passable resolution for the splitting functions.

4.2 Editing and Filtering of Seismic Traces

Our technique is based on fitting spectral peaks in the frequency domain, obtained

from filtered long-period vertical recordings. For each event we view up to 6 days
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of data following the earthquake, and an equal period of time before the event. The
trace is band-passed to eliminate the tide signal and then purged of the presence
of glitches, aftershocks, and other small events and also of clipped segments in the
period immediately following the origin time of the event. The recording is discarded
if more than a significant percentage of the signal is found to be unusable (> 10%).

Windowing in the time domain is used to obtain higher resolution in the frequency
domain. After experimenting with various windows, we elected to use 2 Hann win-
dow, a good compromise between visual separation of the singlets and signal-to-noise
ratio degradation in the frequency domain [Dahklen, 1982].

Rather than selecting a fixed duration for each recording, we obtain for each mode,
by trial and error, the optimal length that preserves a good signal-to-noise ratio (up
to a maximum 144 hours); this sometimes exceeds, but more often is shorter than
the characteristic “Q cycle” [Dahlen, 1982] because of the high noise content of some
traces. For some high-¢J, low-amplitude overtones it proved useful and sometimes
necessary to discard the first portion of the time recording (up to 24 hours) in order to
allow the desired signal to emerge from that of a more rapidly decaying fundamental
mode. Fach trace is padded with zeros up to 192 hours duration, transformed using
a fast Fourier transform algorithm and divided by the instrument response to give
the spectrum of ground acceleration.

To avoid any possible phase contamination introduced by the procedure, we con-
struct the synthetic seismograms and the partial derivatives in the time domain, and
we apply to them identical filtering, padding, transform, and phase equalization as
we do to the data.

The inverse theory employed in this study requires that the errors associated
with the data are independent samples from a normal normal distribution (see Sec-
tion 3.1). However the padding and windowing described above introduce noninde-
pendence of pointwise spectral estimates. The nonindependence caused be padding
is approximately accounted for by incorporating into summations (N as used in
(3.12)) over data elements a factor representing the proportion of data values which

are independent; this is taken to be the ratio of the true time series length to its
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padded length. This correction does not account for the effect of windowing, which
requires a significantly more elaborate treatment and has been investigated only for
much simpler inverse problems. Results for an ideal case (J. Park, personal com-
munication, 1987) indicate that the effective number of independent data is likely
to be further reduced by a factor approaching 2. It is likely therefore that the error
estimates given in this thesis should be increased by a factor of the order of 1.5.

These corrections are also important in applying F-tests to the results of the
inversion; the number of independent data is taken to be the true number of data
multiplied by the same factors. The number of independent complex spectral points
corresponding to each spectral segment used in inversion is, by this procedure, of
the order of 4 to 10.

Figure 4.2 shows examples of spectral windows containing the multiplets 1353,
385, 555 and the overlapping pair 0S7-253. Each frame represents the amplitude
and phase spectra in a narrow frequency band, containing only one or two modes.
Data are represented by continuous lines; synthetic spectra, indicated by dashed
lines, are computed for the PREM model, including the splitting due to rotation
and ellipticity. Vertical dotted lines delineate the portion of the signal used in the
inversion. Only traces with high signal to noise ratio are displayed in Figure 4.2,
in order to clearly show the large discrepancies between data and synthetic spectra
due to aspherical structure.

The amplitude and phase content of the spectrum are separated only for visual
claﬁty; all computations are performed in terms of complex spectral values. The
va,fiance ratios shown in Figure 4.2, and throughout this thesis, refer to the complex
spectrum and represent ratios of squared misfit to squared data. The frequencies and
relative amplitudes of the singlets contributing to the theoretical trace are displayed
as vertical bars in the bottom panel of each frame; in the case of multiple modes,
the singlet amplitudes are independently normalized to the maximum amplitude for
each mode.

For mode 135> the data clearly show anomalous splitting behavior; singlets cor-

responding to m = 0 in Figure 4.2¢ and m = %2 in Figure 4.2b are shifted toward
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the central frequency of the mode, and the phase differs from that of the synthetics
by up to half a cycle. Modes 057 and 253 are closel}y spaced, and even by using
140 hours of data, it is impossible to resolve the different singlets; the synthetics,
however, are not able to reproduce the central location of the peaks in Figure 4.2¢ or
match the amplitude observed in Figure 4.2d. For mode 556, again the amplitude is
very poorly reproduced in Figure 4.2¢ and a peak is completely absent in Figure 4.2 f,
whereas for mode 39, the synthetics predict only one peak, and two are observed in
the data in Figure 4.2g.

The phase agreement is very poor in all cases, which is reflected in the high
variance ratios indicated for each trace, averaging well above unity. The misfit
between data and predictions is attributed to the aspherical structure of the Earth,
and this constitutes the information used in the inversion for the splitting functions.
The data set used in this study consists of approximately 1000 spectral segments of

the kind shown in Figure 4.2.

4.3 Noise

In the inverse theory presented in Chapter 3, it is assumed that the errors of all
data points have the same variance 2. In order to approximate this condition, we
need to weight the data of each trace by its noise level.

The noise content of the recordings varies widely among different modes, events
and stations. For each mode we need to compute a reliable estimate of the noise
content of each trace, in order to wéight the data in the inversion procedure. Because
of the presence of other modes close to the frequency window of interest, it is often
impossible to evaluate directly the noise level of the trace in the frequency domain,
and we use, instead, data derived from a time series recorded at the same station
before the event. We select a trace of the same length as the one used as data for
a specific mode, and we apply the same procedure to it as we do to the data. The
noise level is then estimated by calculating average spectral power of the noise trace
in the inversion window. This noise estimate is used in the invefsion procedure as a

weight factor for each data point in the trace.
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Chapter 5

Inversion for the Splitting

Functions

5.1 Modeling Considerations

The inversion for the lateral structure of the Earth is strictly a continuous inverse
problem; as such, a complete solution is impossible. Using a finite collection of data,
one is limited to solutions of finite resolution which are smoothed or filtered versions
of reality. The modal splitting function, on the other hand, is represented by a
ﬁnité spherical harmonic expansion, and thus the corresponding inverse problem is
strictly discrete. For an isolated multiplet of angular order [ there are (I +1)(21 +1)
complex paraméters which completely characterize the splitting properties of the
multiplet, its singlet eigenfrequencies and eigenfunctions. In this study, however, we
limit our investigation to the low-degree, real portion of the splitting function and to
the spherically symmetric imaginary part, the latter corresponding to a spherically
symmetric correction to the attenuation of the multiplet. |

We elect to ignore the higher-degree terms rather than solve a very undercon-
strained nonlinear problem. This is a matter of practicality, since as will be shown
below, insufficient data are available to derive the higher-degree cbmponents of the
splitting functions. This would, of course, be an unjustifiable and misleading proce-

dure if modal splitting were caused largely by higher-degree terms; there are reasons
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to believe, however, that degrees 0, 2, 4 play a major réle. First, modes of angular
order [ = 2, which are sensitive only to these degrees, show substantial splitting
anomalies and are among the modes which display the phenomenon of anomalous
splitting. Second, inversion for the splitting functions of modes of angular order
greater than 2 yields similar patterns (see below), and moreover, the inclusion of
higher degrees in the splitting functions of these multiplets leads to only minor ad-
ditional reductions in variance. Third, models of the lower mantle constructed from
travel times and from waveforms [Dziewonski, 1984; Morelli and Dziewonski, 1985,
1987b; Woodhouse and Dziewonski, 1986] have large terms of degrees 2 and, to a
lesser extent, 4.

A result of the inversion procedure is error estimates associated with the solution.
These are, of course, dependent upon the parameter ¢ which is assigned to the “prior
information”. In a linear problem the analysis of resolution and error jointly should
quantify the true uncertdinty, assuming that the underlying statistical assumptions
hold; in this nonlinear problem we attempt to further address the problem of un-
certainty by performing a number of experiments devised to test the stability of the
solutions with respect to the amount and quality of data, different a priori model
statistics, and varying criteria used in weighting the data. We also attempt to assess
the potential for aliasing from higher-degree terms, and test for instabilities between
the real and complex portions of the splitting function, linearity in response to differ-
ent levels of minimization, and smoothness of the iterative convergence. Because we
cannot know in any objective way the spectral power distribution characterizing the
Earth’s heterogeneous structure, we have explored the sensitivity of our solutions to
the a priori requirements of harmonic expansions with power equally distributed or
decaying with increasing harmonic degree.

Experiments were also performed in which the weights assigned to the data seg-
ments to achieve uniform variance were estimated iteratively in terms of misfit be-
tween data and synthetic spectra, rather than from the spectral power in a trace
preceding the earthquake. We performed inversions using only part of the data or

only some of the available seismic sources, and we applied different noise thresholds
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to the data. Modes that failed to show the desired stability in these tests were
climinated from the present experiment. The results of these tests are only in part
presented here.

In the final solutions a weight is assigned to each of the data according to their
absolute noise level. The parameter ¢ is chosen on the basis of an F-test of statistical
significance. The convergence of the nonlinear procedure is usually very stable. Step-
length damping was introduced in the iterative procedure to smooth convergence and
avoid overshoot. In the more extreme nonlinear cases, in fact, we find that unless
precautions of this kind are taken, the splitting function may diverge in such a
manner that one or more singlet eigenfrequencies escape from the narrow frequency
band used in the inversion.

The real and imaginary parts of cgo are of special interest, since they correspond
to corrections in the eigenfrequency and attenuation of the mode in the spherically
averaged Earth. Since we expect that these parameters should be among those
best constrained by the data, we specify infinite prior variances (i.e., no prior in-
formation) for cgo. This has the desirable consequence of making these estimates
essentially independent of the spherically symmetric reference model; the resulting
values correspond to measurements of degenerate eigenfrequency and @ which are,
as far as is possible, uncorrupted by lateral heterogeneity. The prior variances of

other elements of the model are taken to be equal in the final solutions.

5.2 Results

Table 5.1 Hsts the relevant parameters of the final inversion. The initial variance
refers to the synthetic spectra incorporating only rotation and ellipticity in the ref-
erence model (cf. Figure 4.2). The variance reductions are very substantial in most
cases, both for the “anomalously” split modes such as 1154, 1352, and 1353, as well as
for longer-period modes such as 352, 657, 253, 157, and 15s. Also listed in Table 5.1,
for each mode, are the number of traces and the resolution parameter R, expressed

as fraction of the total number of parameters used for each mode or mode pair.
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The splitting functions for all the modes and their standard errors are tabulated in
Table 5.2.

One test on the validity of the splitting functions, and thus of the earth models
we will derive from them, is the degree to which they remove the large discrepancies
and misfit observed in the data (Figure 4.2). Table 5.1 gives the variance reductions
obtained using the tabulated splitting functions; Figure 5.1 illustrates how these
variance reductions correspond to a substantially improved match between data and
synthetic spectra. We display in Figure 5.1 the same spectra as those in Figure 4.2,
with the synthetics computed using the splitting functions of Table 5.2.

In cases of good signal-to-noise ratio the observed and synthetic phase spectra now
agree to within a few degrees and the locations and amplitudes of the peaks are also
well matched. The singlet locations for the anomalously split modes 13.5; and 35,
are well predicted in Figures 5.1¢-5.1b and 5.1¢-5.1k, and the amplitude and shapes
of modes (57 and 353 are well reproduced in Figures 5.1¢-5.1d. We note again that
this is not due to a change in the source excitation and is only weakly dependent on
the perturbed attenuation value. The most important source of improvement in the
fit is the location and phase of the interacting singlets, which affects the shape and
phase of the multiplets.

To illustrate the properties of the sp}itting functions, we concentrate here on four
modes, chosen to represent characteristic mode types: 355, 057, 856, and 135;. For
these we map the splitting function and the associated error, and plot the resolution
matrix; we also illustrate the dependence of the solution size (rms) on damping level

(<) and parameterization.

5.2.1 Splitting functions
The value of the splitting function at the geographic point (8, ¢) may be written
U(Ga ¢) =cC- Y(ga 96) (5.1)

where ¢ is the vector of ¢, coefficients and y(8, ¢} contains the spherical harmonic

values at (8, ¢) (cf. the definition of splitting function in (2.15)). As in the case of
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Table 5.1: Variance Ratios (Squared Misfit/Squared Data)

Mode Var Varg R #
053 0.169 0.206 4.3/16 22
054 0.324 0.669 11.0/16 36
05 0.211 0.754 12.3/16 42

153 —3 5 0.299 0.436 9.1/23 37
456 0.143 0.624 15.4/16 37
35, 0.324 1.467 11.4/18 25
1594 0.325 0.400 6.6/16 35

087 —9 S3 0.134 0.689 29.3/32 50
155 ~2 54 0.341 0.659 24.5/32 47
285 —1 Ss 0.728 0.876 14.2/32 35

059 0.211 0.915 15.2/16 59
157 0.280 0.880 12.2/16 38
255 0.449 0.787 12.3/16 34
158 0.307 0.936 12.6/16 36
455 —2 S 0.450 (.862 25.3/32 67
553 0.376 0.554 7.0/16 11
454 0.542 0.771 7.1/16 23
554 0.402 0.687 13.3/16 47
555 0.350 0.708 13.2/16 60
383 —¢ 53 0.354 0.944 23.4/32 39
556 0.255 0.900 12.6/16 30
953 0.436 0.526 6.7/18 15
1052 £.386 14.7/18 34
6310 0.567 0.803 11.3/16 44
1154 0.403 1.406 14.9/16 22
1352 0.303 1.780 13.5/18 20
1155 0.554 1.140 15.2/16 24
1393 0.371 1.069 9.5/16 21

The variance ratios obtained using the derived splitting functions
of Table 5.2 are given in the column headed by Var. Those ob-
tained including only the effects of ellipticity and rotation for model
PREM are listed in the column headed by Varg. The resolution
estimator (R) is the trace of the resolution matrix and is given as
a ratio to the number of (real) unknowns in the inversion. The
number of records (#) used for each spectral window is indicated.
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a phase velocity map, the result represents the effect of the heterogeneity integrated
with depth and weighted by the corresponding differential kernels. Figures 5.2a~
5.5a show the splitting function for each selected mode. We use the same maximum
scale of 0.2% for all modes to highlight those requiring large aspherical perturba-
tions; because of this, the scale can be saturated in a few extreme cases where the
perturbation exceeds 0.2% of the mode frequency, as is the case for mode 35, in

Figure 5.4a.

5.2.2 Error maps

The standard errors listed in Table 5.2 are those obtained from the diagonal el-
ements of the covariance matrix. These do not include the effects of covariances
between model parameters and thus do not indicate whether model error is ge-
ographically localized or evenly distributed over the globe. Following (3.15) and
(5.1), we map in Figures 5.26-5.55, for each selected mode, the function

E(9,¢) =[y"(6,4) C y(8,¢)}} | (5.2)

which represents the standard error associated with the value of the splitting func-
tion at each point of the globe. We adopt a normalized scale as percentage of the
maximum contour value (0.2%) of the splitting-function map in Figures 5.2a-5.54.

Our results indicate that the errors are indeed quite uniformly distributed. The
fact that uniformly distributed errors are obtained using relatively poor data cover-
age can be ascribed to the physical nature of these modes. Corresponding, as they
~do, to waves suffering numerous reflections and conversions continuing for days after
the earthquake, they are sensitive to structure everywhere on the globe; in this re-
spect they have markedly different properties than do surface wave equivalent modes
at higher frequencies, which tend to have sensitivities confined to a region close to

the great circle connecting source and receiver.
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Fig. 5.2. (a) splitting function, (b) error map, {c) resolution matrix, and {d) spectral power plot
for mode 5Ss. (a) the figure is normalized by mode frequency, with a maximum scale of 025 of
mode frequency (kept constant for all modes in this thesis). {b) The error map is plotted i the same
fashion. The maximum scale is indicated in percent of the maximum-scale value of the splitting
function plot (0.2% of mode frequency}). See text for details on the computation and the rolinbility
of the error estimates. {c¢) The resolution matrix is plotted to a maximum seale of 1. n value
reached only by the diagonal elements corresponding to the real and imaginary cun coellicients.
left undamped in the inversion. (d) The spectral power plots show the average spectral power
(verticle axis; logarithmic scale) in each harmonic degree {“A” indicates the results for attenaticn
- Im(eqq)) for splitting function solutions obtained at different levels of damping (v=0.01 {phaes
signs}, ¢=0.1 (squares), and c=0.5 (crosses)), which varies the relative weight nssigned 1o the
model norm with respect to the misfit norm: in all cases the harmonic expansich of the sphitting
function was truncated at degree s = 4. Results for the inversion extended o degree s = 8 {with
¢=0.1) are indicated with circles.
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plot for 0S7. This mode is in the same spectral window of mode 253; (¢) the resolution matrix

refers to both maltiplets, with the first 16 entries belonging mode 457, See caption to Figure 5.2
for details,

() splitting function, (b} error map, (c) resolution matrix, (d} and spectral power
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Fig. 5.4. (a) splitting function, (b) error map, (c) resolution matrix. and (d) spectral power plot
for mode 352. See caption to Figure 5.2 for details.
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Fig. 5.5. (a) splitting function, {b) error map, (¢} resolution matrix, and {d) spectral power plot
for mode 1352. See caption to Figure 5.2 for details.
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5.2.3 Resolution matrices

A successful inversion is characterized, ideally, by a small quasi-diagonal covari-
ance matrix and by a resolution matrix close to the unit matrix. It is interesting to
visually inspect the covariance and resolution matrices of the splitting functions to
identify large cross-correlation terms between different singlets and model parame-
ters insufficiently resolved. This is particularly true for the case of double modes;
the joint inversion we perform, in fact, is based on the assumption that the data dis-
tribution will be sufficient to effectively separate the two modes. The elements of the
resolution matrix correlating peaks of separate modes will indicate the limitations
of our approach.

Figures 5.2¢-5.5¢ display a graphic representation of the resolution matrix for the
selected modes 5%, 057-253, 352, and 1352, The diagonal terms of the resolution
matrix of all the modes e}naiyzed in this paper are tabulated in Table 5.2.

The resolution matrices we obtain are dominated by their diagonal elements, with
many diagonal terms approaching unity, and with generally small off-diagonal terms.
This is also true in the case of double modes, indicating that we are successfully
separating overlapping multiplets. In some cases, the resolution of two overlapping
modes can be substantially different, as it is for modes ,S5; and 155, indicating the
different resolution provided by the same data for different kinds of modes.

We observe decreasing resolution with increasing harmonic degree of the splitting
function coefficients. The highest resolution is achieved for both cp terms, which

confirms our a priori expectation.

5.2.4 Size of the splitting functions

The choice of the damping parameter ¢ conditions the general strength of our
desire for smallness of the model with respect to the desire for smallness of the
data misfit (see Section 3.1). It is clear that the total rms of the model decreases
monotonically with increasing <, and at the same time the reduction in data variance

decreases with decreasing resolution of the inversion. We are interested of course

91



in determining the ¢ value providing the best compromise between model error and
resolution, and in assessing the significance of the resulting solution. This value will
depend on the distribution of the available data, and will be different for each mode,
reflecting the physical property that the splitting function may be dominated by
only one or two terms of the harmonic expansion for one mode, or by many more
terms for another mode, as is illustrated by the size of the resolution parameter R
in Table 5.1.

Because of the intrinsic nonlinearity of the equations, it is computationally ex-
pensive to iterate the procedure to convergence for many values of ¢. We do it
for three values: 0.01, 0.1, and 0.5, corresponding roughly to resolution parameters
R = 6,9, 12 in the case of single modes. The most “significant” ¢ value for each
mode is determined by applying an F-test to the corresponding three hypotheses; we
retain a hypothesis as statistically significant if it satisfies the F-test at a significance
level higher than 75%.

Figures 5.2d-5.5d display the power content per harmonic degree for each se-
lected mode, including the complex ¢og term, for the different values of the damping
param'ejter ¢ =0.01,0.1,0.5 (indicated with plus signs, squares, and crosses, respec-
tively). The distance between the three curves is is related to the significance of
the corresponding < values; lower solution rms correspond to higher ¢. Also, the
stability of different harmonic degrees with respect to damping becomes clear; the
larger variability of the degree 4 terms reflects the lower resolution shown by the
resolution matrices (Table 5.2). The apparently high variability of the cop terms (cf.
Figure 5.4d for mode 35; and Figure 5.5d for mode 135;) may be misleading; the
logarithmic scale indicates that these components are usually quite small, implying
a small departure of the central frequency and attenuation of the mode from the

values predicted by PREM.

5.2.5 Aliasing

The splitting coefficients c,; constitute linear constraints on lateral heterogeneity

of degree s and order ¢. If the results are to be so used, it is important to verify that
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they are not marred by aliasing, i.e., that heterogeneity of high harmonic degree is
not being misinterpreted as low-degree heterogeneity. At the same time, aliasing
tests are an effective way to check the stability of the splitting function solutions.
The mode sSe, for example, is sensitive to heterogeneity up to degree s = 12, and
we may test if a significant variance reduction is obtained by expanding its splitting
function to such degree, and if by truncating the expansion to the lower degrees we
are introducing any sizable aliasing. These questions are answered by performing
inversions of the splitting function to high degree and comparing the low-degree
terms with those obtained in inversions for a truncated expansion. An estimate of
the aliasing present in the inversion procedure can also be derived by analyzing the
off-diagonal terms of the resolution and covariance matrices.

Figures 5.2d-5.3d also show the rms of the harmonic expansion coefficients, for the
selected modes, up to degree 8, indicated by open circles. The damping parameter
has been fixed for all the modes at ¢ = 0.1, allowing a direct comparison only with
the corresponding truncated values, indicated by squares in Figures 5.2d-5.3d. The
comparison is satisfactory in most cases. The average power content decreases with
increasing harmonic degree, suggesting a “red” spectrum in agreement with the
presence of a dominant long-wavelength heterogeneity (s = 2} discussed previously.

We test if the available data would be sufficient to resolve the higher degrees
by comparing statistically the results of the two inversions. Although a variance
reduction is obtained in all cases, as is expected, it is a significant reduction for
only half of the modes, as shown by the F-test. These results indicate that some
multiplets possess significant sensitivity to degrees above 4, a property that will be
exploited in future analysis.

We also compare the individual splitting coefficients obtained by adopting a trun-
cated expansion with the terms of degree s = 2,4 obtained using the full expansion.
The results are very positive for most of the modes, producing virtually identical
maps in most cases. We observe more instability precisely for the modes we expect
to be more unstable: mode 553, for which only 11 traces could be retrieved, and

modes with significant power in higher degrees, such as 1355 and 255. In these we
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feel that a significant uncertainty is associated with the splitting function patterns,

probably more than that indicated by the statistical errors.

5.2.6 Central frequency

Using the splitting function coefficients and their covariance matrix, we may de-
rive, using (2.8) and (3.15), the elements of the splitting matrix and their covariance
matrix. We also calculate the eigenvalues ); of the splitting matrix, which are
the singlet eigenfrequency perturbations relative to the reference frequency, and lin-
earized approximations to their variances and covariances using (3.16) and (3.17),
together with the following result (Rayleigh’s principle) for the derivatives of the

eigenvalues of H with respect to the its individual elements:

Ox
OH;;

where matrix U has been defined as in {2.22). This calculation is needed to obtain

= U,;-lUjk (53)

the standard errors associated with the singlet eigenfrequencies and the splitting
width. The values and covariances of may be used to calculate the central
frequency and its standard error; these quantities are more simply obtained, however,

from the diagonal sum rule:

1 2 con
Wy = Wy + N1 g; Re(ﬂ;;) = Wy (1 + Z‘;) (54)
and thus the standard error is
wo ' A
= .
bw o (% (5.5)

The central frequencies we obtain are very close to those predicted by PREM, their
difference being of the order of a microhertz and they are invariably within the error
bounds used by Dziewonski and Anderson [1981] in the construction of the PREM
model. The standard errors obtained here, however, are much smaller; as is shown
in Table 5.3, they are typically a fraction of a microhertz. Although these errors may
seem exceedingly small, it should be ﬁoted that a frequency error of 10-"Hz would

produce a phase misalignment of ~ 10° after 80 hours which approaches the level
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Table 5.3: Central Frequency, Splitting Width, and @ Parameter

Derived from the Splitting Functions

95

Mode f &f Af W §W T Q §6Q AQ
05 468.46  0.02  —0.10 13.001 003 1.00 439 27T 22
0S4 64677 0.02 031 954 004 100 406 15 33
0Ss 839.09 002 045 731 0.03 103 374 11 19
153 939.92 0.04 0.00 14.8% 006 1.00 328 18 46
35 . 94433 0.02 039 323 003 101 802 54 -—17
oSe 103753 002 071 6.14 0.04 1.20 367 6 20
3S.  1105.24  0.05 -0.97 864 0.0 133 332 18 -34
S, 117270 003  —0.16 1831 006 100 292 g 21
oSy 123107 002  -0.74 541 004 170 370 5 28
.83 124294 0.03 0.757 736 0.06 1.48 403 17 -12
1Ss 1370.05  0.04 ~0.922 1996 009 101 345 12 54
2S5 137962  0.05 042 528 000 1.68 38 17 8
.Ss 151564  0.12 0.71 501 020 1.7t 378 42 76
C1Ss 1522.07  0.10 0.03 1642 019 1.02 379 35 34
0Se  1576.99 0.03  -1.31 403 004 134 330 4 -2
18; 165445 0.03 ~1.06 14928 007 109 433 10 61
.Ss  1681.42  0.07 058 859 0.6 1.27 244 7 7
.S 1797.80 003  -151 1403 009 114 414 9 35
4S; 204837 006  —0.591 663 0.14 1.30 470 23 -10
2Sg  2050.41  0.07 121 14.96 016 118 195 4 -2
<Gy 216934 008  -031 647 0.14 1.38 342 16 50
454 227926  0.09 -034 719 015 167 303 13 13
sS4 237921 0.04 -0.31 7.29 011 1.36 531 19 42
55y 2703.71  0.04 0.35 G.18 008 1.40 562 15 60
¢Ss  2821.83 0.08 0.11 0.04 019 236 480 20 54
355 2819.53  0.11 -0.12. 9.15 024 153 300 11 37
5Ss 301160 0.04 091 10.87 008 145 612 16 1086



Table 5.3: continued

Mode  f f Af W W r Q60 AQ
oS5 3556.18 0.09 120 633 015 114 768 55 -9
105 4040.81  0.07 13.09 013 345 878 35

S0 421112 0.12 0.35 1522 032 1.64 357 9 3
nSs 476557 0.07 -—-1.30 1295 0.16 1.66 726 25 25
1352 484479 014 048 1532 026 240 943 50 65
1nSs 507363 013 ~0.78 1457 042 164 638 36 27
1353 5193.98 (.10 0.16 13,75 020 1.74 905 B4 -3

The central frequency (f), the associated errors (6f), and its distance (Af) from
the value predicted by PREM (Table 1) are in microhertz. The splitting width (W),
also in microhertz, measures the difference between the largest and smallest singlet
eigenfrequencies; the standard error (§W) is also indicated. The ratio of the splitting
width of the multiplet to the splitting width resulting from rotation and ellipticity
() always exceeds unity, reaching values ~ 2.5 for the anomalously split modes. The
perturbed @ value, its error (6Q), and the difference (AQ) from the Q values of
PREM are indicated. See text for details on the computation and the reliability of
the error estimates.

of pha.se. agreement obtained using the splitting functions in cases of high signal-to-
noise ratio. Previous measurements of degenerate frequency have been hampered by
the effects of splitting and attenuation, whereas in the present study, these effects
have been explicitly accounted for; it is for this reason that much more accurate

measurements of central frequency are possible.

5.2.7 Splitting width

We derive from the location of the singlets the splitting widtﬁ for each mode listed
in Table 5.3, together with its standard error, and the ratio of the splitting width
to the theoretical splitting width due to rotation and ellipticity. These are listed
primarily for comparison with- the results of Ritzwoller et al. [1986], who adopt a
different procedure, based on the retrieval of singlet frequencies through stripping
techniques. Although a certain amount of damping is applied in our inversion pro-
cedure, the splitting widths recovered agree well with those recovered by singlet
stripping, even for the most anomalously split modes, 125, and ¢S5, which have a

splitting width ratio of approximately 2.5.
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By comparing Tables 5.1 and 5.3 we note that substantial variance reductions are

obtained for modes displaying a large range of splitting width ratios.

5.2.8 Attenuation

Throughout the experiments shown here, we invert only for the coo term in the
harmonic expansion of the imaginary part of the splitting function. This is equiv-
alent to inverting for a spherically symmetric correction to the @ of the multiplet
or to applying the constraint that all singlets have the same Q. Inversion has been
thus restricted for several reasons. First, we find the inversion for a complete ¢, ex-
pansion frequently to be unstable, leading to large perturbations in the differential
attenuation of singlets and to small shifts of the singlet eigenfrequencies; in a nonlin-
ear problem such instability prevents a reasonable solution from being found, owing
to the proliferation of local minima. Furthermore, extending the parameterization to
its full complex form after convergence has been reached for the restricted inversion,
leads to only a very slight additional variance reduction, statistically insignificant
when account is taken of the doubled number of model parameters. A much larger
body of data is needed to address the problem of lateral variations in attenuation.

The introduction of the imaginary part of ¢, on the other hand, is highly signif- '
icant and allows us to estimate a @ value for each mode, given by

We

Q= 2(ao + Im(coo) -wo(tlvr)“%)

(5.6)
where ap = wo/2Q is the imaginary part of the reference frequency.

Table 5.3 lists, for each multiplet, the @ value and its standard error, which is
typically of the order 1%. These values are usually within 10% of those predicted
by the PREM model, listed in Table 5.3. The standard errors probably underesti-
mate, somewhat, the true uncertainties, but we would expect that these measures
of attenuation are among the most accurate ever obtained. They are the first such

measurements derived from many records simultaneously and correcting, as far as

is possible, for the corrupting influence of modal splitting.
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5.3 Discussion

The close correspondence between the inferred splitting functions of multiplets
possessing similar differential kernels provides evidence, more compelling, we believe,
than the formal error estimates, that the splitting functions have been accurately
retrieved and that they do, indeed, reflect the Earth’s three-dimensional structure.
Modes on the same branches, with comparable sensitivity in the same depth ranges,
display the same degree of similarity in their splitting functions.

What emerges from our analysis of the splitting functions is a series of well-defined
patterns which can be directly linked to specific regions of the Earth’s interior by
examining the corresponding modal differential kernels. The task of deriving an
earth model that combines these patterns, satisfying all the splitting function data
simultaneously, requires further use of inversion techniques and will be taken up in
Chapter 7. Here we compare differential kernels and splitting functions for some of
the modes analyzed, in order to illustrate these patterns and to point out similarities
and differences between splitting functions of modes with similar differential kernels.

Figures 5.6-5.10 show kernels and splitting functions for five sets of modes. The
splitting functions are plotted in the same fashion as those in Figures 5.2-5.5. The
differential kernels for heterogeneity, which are those defined through (2.31)-(2.33),
represent the sensitivity, as a function of depth, of the splitting function to the
relative perturbation in P velocity (a), S velocity (8), and density (p). For a given
mode the kernels depend upon the degree s of the perturbation, but it will be noted
that for most modes, particularly those of larger angular order, the kernels are very
similar for the three s values shown; in the limit I 3> s they are equal, reflecting
the equivalence of the splitting function to bwioeal in the asymptotic limit of large
I. At the bottom of each kernel panel we also show the sensitivity to topographic
perturbations (see (2.28)) of the four major surfaces of discontinuity; from top to
bottom, these are the free surface (sea floor for our reference mode} PREM), the
670-km discontinuity, the core-mantle boundary, and the inner-core boundary (the

kernels for the inner-core boundary of many modes are so small that they vanish
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Fig. 5.6. Differential kernels {cf, (2.31), (2.32), (2.33)) end splitting functions for modes 453,
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~4/a to +4/a, where a is the radius of the Earth. At the bottom of each panel we also show
the sensitivity to topographic perturbations (cf, (2.28); scale: —1 to +1}): from top to bottom,
these are the free surface, the 670-km discontinuity, the core-mantle boundary, and the inner-
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mantle and essentially vanishing sensitivity below the core-mantle boundary.
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from sight in these figures).
Figure 5.6 contains the results for modes 453, 554, 555, and 5Ss, which have periods
‘between 488s and 332s. The kernels show that these multiplets have great sensitivity

to P velocity heterogeneity in the lower mantle. The splitting functions display a

- similar pattern, dominated by the two ¢y, terms and by the imaginary part of ¢y

(see Table 5.2, fr_om which correlation coefficients are readily derived).

In .Figﬁre 57 modes 1S5, 156, 254, and 35g behave in similar way. The kernels
are large throughout the mantle, in various combinations of e, p, and especially 3,
with some -'.s.é'nsitivity also in the outermost core. The splitting functions, however,
are dominated by ¢;; and Im ¢y (note, for example, the patterns of modes ,34
in Figure 5.7¢ and mode 555 in Figure 5.6¢). The similarities among the splitting
functions and the kernels of the modes shown in these two figures strongly suggest

‘that .t.hé heterogeneity producing the splitting behavior is limited to the mantle.

This argument is reinforced by the results for the multiplets ¢Ss, 057, 157, and
158 shown in Figure 5.8. Spanning the period range 963s to 555s, tlhe kernels are
dominated by similarly large sensitivity to heterogeneity in 8 throughout the lower
mantle and to heterogeneities in a and p at the top of the outer core. Again, the
largest coefficients in the splitting functions are the ¢y terms, together with signifi-
cant coo. The amplitude is appreciably larger than in Figures 5.6-5.7, suggestix}g that
heterogeneity in shear velocity in the lower mantle is larger than the corresponding

heterogeneity in P velocity.

A 'ra,c:if'c.al'ly different set of modes is shown in Figure 5.9. with periods ranging
between 354s and 192s, modes 53, 1151, 1352, and 1353 are of the PKIKP type,
with generally low sensitivity to shear velocity in the mantle and « and p kernels
. exfehdiﬁg throughout .the outer core and into the inner core. In this case they
display a largely zonal pattern with a predominance of ¢y and, to a lesser extent,
22 .a.nd various terms of degree 4 (see Table 5.2). This is true for modes with quite
different sensitivity in the outer core (compare ¢S3 and 1353), a possible indication
that the heterogeneity generating the zonal pattern may not be located in the outer

core. At the same time, sensitivity to heterogeneity in the inner core is much more
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pronounced for 1353 and 139, than for ¢5s.

The splitting function and the differential kernels of mode 10S; are shown in
Figure 5.10a.This mode holds a special position in the history of structural studies
of the inner core [Dziewonski and Gilbert, 1973; Masters and Gilbert, 1981]. Because
of its potential coupling with 135z, its central frequency and differential kernels are
strongly model dependent. The values of wo and Qpredicted by PREM do not satisfy
the data; a Q ~ 800 is observed, much higher than the value (Q = 192) predicted
by the PREM model. The eigenfunctions and differential kernels in PREM for the
modes 109, and 1352 are of similar amplitude both in the mantle and in the inner
~ core, making each of them a combination of a PKIKP-equivalent mode and an inner
core oscillation. It can be shown that even a small (~2%) spherical perturbation
of the elastic structure in the inner core is able to effectively decouple the two
modes, in such a way that one becomes a PK. IK P-equivalent mode and the other is
almost entirely confined within the inner core. An increase in inner-core S velocity
of PREM by ~2%, for example, results in 305, becoming the observable mode at
the surface, with central frequency and @ consistent with the spectral observations;
105, becomes effectively decoupled from 115; (this will be treated more fully in a
subseqﬁent contribution).

The modified differential kernels for 1052 (Figure 5.10a) are very similar to those of
the PKIKP modes {cf. Figure 5.9); the derived splitting function is also similar and
is dominated by the ¢, c40, and cp; terms. The splitting properties of mode ;057
confirm its nature as a PKTKP mode and the likelihood that it is largely uncoupled
with 1192.

Three anomalous long-period modes, 351, 352, and 253, are displayed in Figures
5.100-5.10d. Their periods, 1059s, 903s, and 805s, are much longer than for the
PKIKP modes in Figure 5.9, and they provide important constraints on earth mod-
els. While the kernels here are again not totally dissimilar, unlike the modes of the
groups previously illustrated, the splitting functions are profoundly different. Mode
25, lacks any sensitivity to degrees higher than 2. Its.a and B kernels for degree 2

are of opposite sign in the lower mantle, and kernels in the outer core decrease with
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depth, and are essentially zero in the inner core. The splitting function is very small;
the splitting properties of 35 are very well predicted by the effects of rotation in
the PREM model (cf. Figure 5.10¢, Table 4.1). The incongruity of large differential
kernels associated with a small splitting function requires an explanation; a possible
solution invokes an homogeneous outer core and efficient can;eilation between the
~ effects of the heterogeneities in & and B in the mantle, provided the heterogeneity
in B is larger than and proportional to that in «.

The differential kernels for mode 35, are more complex in the mantle and larger
for degree 2 in the inner core, and display high sensitivity to a perturbation of the
core-mantle boundary at degree 4 (off scale in Figure 5.10c). The splitting function,
dominated by the ¢y and cgp terms, is very large,

Finally 53 has similar kernels to those of 353, and a large zonal splitting function,
dominated by ¢z0 and, to a lesser extent, by other degree 2 terms (Figure 5.10d). It
should be noted that the degree 2 terms omitting cgo are highly correlated across
most of the multiplets of Figures 7-11. For instance, for 2S5 correlation coefficients
of such terms with those of 157, 456, and 1S5 are 0.96, 0.83, and 0.97 respectively, a
strong indication of a common origin for these terms in the mantle. The significance

levels of these correlations are 99.0%, 91.8%, and 99.4%.
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Chapter 6

Forward Modeling of Splitting
Functions Using Existing Mantle
Models

So far we have discussed the retrieval of the splitting functions of some uncoupled,
long-period modes. These can be combined in a linear inversion for an aspherical
model of the Earth’s mantle and core; such a procedure will be detailed in the next
chapter. Here, however, we make use of existing models of the upper and lower
mantle, obtained by other techniques, and seek to determine the extent to which
these models are consistent with the splitting properties of the modes. We limit our
investigation to modes sensitive only to heterogeneity in the mantle, and compare
the splitting functions predicted from existing models with those retrieved from the
modal data.

A variety of models of mantle heterogeneity has been developed in the last few
years. For example, the model M84A [Woodhouse and Dziewonski, 1984] has been
obtained by waveform inversion of mantle waves, and describes the S-velocity struc-
ture of the upper mantle. For the lower mantle, models are available from tomo-
graphic inversions of travel time data for P waves [Dziewonski, 1984; Morelli and
Dziewonski, 1987b], representing the lower mantle P-velocity structure. Since the

splitting properties of normal modes depend on the combined heterogeneity in o (P
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velocity), 8 (8 Qeiocity), and p, both in the upper and lower mantle, we must as-
sume proportionality laws between these aspherical perturbations in order to predict

splitting functions:
Slna="Pénp (6.1)
blnp=Réln« ‘ (6.2)

In this chapter we shall first investigate the constraints on the factors P and R
for the lower mantle provided by the splitting coefficients we have retrieved. Once
the proportionality factors have been chosen, it becomes very straightforward to
calculate the synthetic splitting functions from existing earth models. At the end
of this chapter, we compare these synthetic splitting functions with those retrieved

from the modal data (see Chapter 5).

6.1 The Relative Amplitudes of Lower-Mantle
Heterogeneity in P and S Velocities

Lateral heterogeneity in seismic velocities and density in the mantle reflect varia-
tions in temperature and, possibly, in chemical composition. Thus knowledge of the
relationship among the perturbations in P-velocity (), S-velocity (), and density
(p), in conjunction with experimental results on rock properties at mantle conditions,
has the the poteﬁtial to discriminate between different mineralogies and different hy-
potheses concerning the cause of heterogeneity. Based upon laboratory experiments
on the change in rock properties with temperature, Anderson et al. [1968] have
concluded dlna/dln 8 = 0.8 and dlnp/dln e = 0.5 and these values have been of-
ten adopted for the Earth’s mantle (e.g., Forte and Peltier [1987); Ritzwoller et al.
[1988]). However, other authors have questioned the validity of these values for the
lower mantle [Anderson, 1987; Yeganeh-Haeri et al., 1989], where temperature and
pressure are simultaneously high and many material properties are still unknown.

Previous attempts to estimate of dln ¢/dIn 8 from seismic data have been based

upon the comparison P and S station corrections {e.g., Hales and Doyle [1967];
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Wichens and Buchbinder [1980]), which largely reflect upper mantle heterogene-
ity. Such studies generally concern limited areas for which S arrival times have
been carefully reread for selected earthquakes. Souriau and Woodhouse [1985] have
addressed the problem by making a worldwide comparison between the predicted
S-wave delays of the upper mantle model M84C [Woodhouse and Dziewonski, 1984]
with P station corrections [Dziewonski and Anderson, 1083]. These studies generaly
indjcate low values (0.42 - 0.75) of dln/dln § for the upper mantle, a result which
has been ascribed to the existence of partial melting in the upper mantle [Hales and
Doyle, 1967].

In recent years, large-scale three-dimensional mantle models have been developed
for both o and 8. Direct comparison of these models immediately yields estimates
on the value of dina/dlnf. For example, Morelli and Dziewonski [1987b] have
developed a P-velocity model V.3 for the lower mantle based on P travel time
residuals (this model is very similar to the model L02.56 of Dziewonsk: [1984]); by
modeling the waveforms of SH body waves, Woodhouse and Dziewonski [1986] have
constructed 2 model of shear velocity heterogeneity in the lower mantle (this model
will be referred to as SW).

Thé value of d1n «/d1n B in the lower mantle determined from these two models
is also low (< 0.5). This is a particularly interesting result, since partial melting is a
less likely explanation for the lower mantle than for the upper mantle. Two possible
explanations involving the physics of mantle minerals at lower mantle conditions have
been proposed by Anderson {1987] and by Yeganeh-Haer et al. {1989]. Owing to the
imperfect, and different, resolution of these two models, however, there remains the
possibility that one or both of them are underestimates of the true heterogeneity of
the lower mantle. It is also possible that the magnitude of heterogeneity is frequency
dependent, and thus the results of comparing models based upon data at different
frequencies could be biased by such an effect.

Here, we approach the problem by making use of the splitting functions we have
retrieved, which are sensitive to the perturbations in ¢ and f simultaneously and

thus provide constraints on dlna/din B from the same kind data.
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Based upon the splitting of normal modes, Giardini et al. [1987, 1988] reported
evidence that lateral variations in P-velocity are proportional to to those in S-
velocity in the lower mantle. In these studies the the optimal value for d1n afdln g,
assumed constant in the lower mantle, was found to be approximétely 0.4. This
result was somewhat preliminary and potentially is open to the criticism [Ritzwoller
et al., 1988] that a larger value could be accommodated if a suitable model of core-
mantle boundary (CMB) topography were introduced. Hence the evidence for the a
small value of dln a/d1n B given in Giardini et al. [1987] was not unequivocal.

It is our purpose here to treat the problem more completely, and to determine
confidence intervals for the derived values. We make use of the splitting coeflicients
of 17 mantle modes. The selected modes may be partitioned into two categories: (1)
modes whose sensitivity in the lower mantle is mainly to S -velocity heterogeneity and
(2) modes primarily sensitive to P-velocity structure. In order to eliminate possible
contamination from CMB topography, we group the CMB-sensitive modes into pairs.
For each pair, a combined set of splitting coefficients is constructed by taking linear
combinations of the splitting coefficients of the individual modes in such a way
i':hat the resulting coefficients have vanishing sensitivity to CMB topography. The
com’oin;ed splitting coefficients are then used to constrain the value of dln afdin
with no contamination from CMB structure. Since the splitting functions currently
retrieved are insufficient to yield independent heterogeneous models of & and A,
from which the approach to the problem of estimating dlna/dln 8 would be very
straightforward, we perform the analysis in the data (splitting coeflicient) space with
the help of preexisting heterogeneous mantle models.

One group of modes used in this study is, in the lower mantle, mainly sensitive
to the heterogeneity in shear velocity. The splitting functions of these modes and
the P-velocity model V.3 [Morelli and Dziewonski, 1987b] may be used to constrain
the value of dina/dln . Another group of modes, which is sensitive mainly to
P-velocity heterogeneity in the lower mantle, can be used to determine the extent
to which the the magnitude of heterogeneity in the model V.3 is consistent with

modal splitting; this will be quantified in terms of a multiplying factor by which
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the perturbations of V.3 need to be amplified or deamplified in order to obtain
agreement with the modal results. This factor could also be interpreted as a measure
of the frequency dependence of heterogeneity, since V.3 is based upon travel time
anomalies of waves having periods of approximately 1s, whereas the modal periods
are more the two orders of magnitudes greater. By estimating and making use of
this factor, a correction can be made to eliminate the potential bias in estimating the
value of d1n e/dIn 8. Parallel but independent analyses can be made by comparing
the splitting data and the S-velocity model [ Woodhouse and Dziewonski, 1986]; the
characteristic period of the data used in constructing this model is of the order 60s.

In four experiments la, 1b, 2a, and 9b described below we seek to estimate the val-
ues of ratios which we denote by oIT[BMP oMD [oTT aMP/35W and gMP 1 gSW
respectively, where the symbol o7 /3P indicates the ratio of the relative pertur-
bations in o as constructed from the travel-time model (V.3) and in § as required
by the modal data, gMP135% denotes the ratio of the relative perturbations in f as
required by the modal data and in 8 as constructed from the SH -waveform model
(SW), etc. These four ratios are to be used to draw our final, ‘debiased’, conclusion
on the value of dln a/dIn § in the lower mantle.

6.1.1 Experiment la: Value of ofT/g"?

Modes 0S4, 055, 056, 057, 0595 155, 1S, 157, 158, 35s, 454, and 553 are, in the lower
mantle, principally sensitive to the heterogeneity in # with some minor sensitivity
to the heterogeneity in p. The differential kernels A(r), Bs(r), and R (r) (see
(2.31)~(2.38)) of these 12 modes for s = 2 and 4 are plotted in Figure 6.1. At
the bottom of each panel in Figure 6.1 we also show the sensitivity to topographic
perturbations (kernels H, in (2.28)) of the four major discontinuities - the surface,
670-discontinuity, the core-mantle boundary (CMB), and the inner-core boundary,
(the kernels for the inner-core boundary are so small that they vanish from sight in
Figure 6.1). The strong sensitivity to the CMB perturbation of most these modes
is evident.

Considering the fluid outer core to be laterally homogeneous [Stevenson, 1987},
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Fig. 6.1  Differential kernels (see (2.31), {2.32), and (2.33)) for spherical hartnonic degrees 2 and
4 of some modes. The sensitivities of splitting functions, as a function of depth. to perturbations
in vp (dotted lines), v5 (dashed lines), and p (solid lines) are plotted in the upper pancls, On side
margins, the 670 discontinuity, the core-mantle boundary (CMB), and the inner-core Loundary
(I1CB} are marked from the top down. The horizontal scale is +4/a, where a is the radin. of
the Earth. In the lower panels, kernel coefficients H, defined in (2.28) are plotted. from top 10
bottom, for the {ree surface, the 670 discontinuity, the CMB, and the [CB. with the scaie running
from —1 to 4+1. The kernels for the ICB of these modes are so small that they vanish [rom sl
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we may assume that the splitting of these modes is from three sources: (1) the
heterogeneity in f of the lower mantle - since both the relative perturbation in p and
its associated kernels are smaller than those in 8, we may neglect the contributions
from the perturbation in p of the lower mantle; (2) upper mantle structure; and (3)
the topography of the CMB.

Since we are concerned with the relationship between perturbations in the ve-
locities of the mantle, it is convenient to eliminate the splitting effects of CMB
topography from the analysis. This can be done by grouping the 12 modes into 6
pairs and forming 6 “hybrid modes” A, B, C, D, E and F. Specifically, hybrid mode
A is a combination of modes 553 and ¢S, weighted by factors .941 and .338 respec-
tively, i.e., the splitting function coefficients and the differential kernels of mode A
are the combinations of the corresponding splitting function coefficients and differ-
ential kernels of modes 553 and oS5, with weights .941 and .338 respectively. We
can write this syr‘nbolically as A= .941;S5 + .33805¢. In this notation the other hy-
brid modes are B= .94935s + .314554, C= .989,55 + 147, 5, D= .993, 57 — 116455,
E= .943,5, 4+ .332,57 and F= .990,5¢ + .14105s. The differential kernels for s = 2
and 4 of these 6 hybrid modes are shown in Figure 6.2. The vanishing of the sen-
sitivity.to the CMB structure for s = 2 of these hybrid modes is evident, and for
s = 4 the sensitivities to the CMB are véry small, except for modes A and E. In this
experiment we use the splitting function coefficients of s = 2 of all 6 hybrid modes
and the coefficients of s = 4 of modes B, C, D, and F.

For each of the selected splitting function coefficients, we may write
Cp = Cft + Cst + Est : (63)

where ¢,; are splitting function coefficients from modal inversion (they are com-
binations of coefficients listed in Table 5.2), ¢’ are the synthetic ones due to the
heterogeneity in 8 of the lower mantle, &, are the contributions from the upper
mantle, and €, are error terms. Now let us assume that the relative perturbation
in a and that in 8 are proportional to each other with a proportionality coefficient
P = dln o/dIn . Under this assumption & can be calculated from the P-velocity
model V.38 by virtue of (2.12)-(2.30) '
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b= [ Br)(6BafBYir = [ Bu(r)(efe)/Pdr = /P (6.4)

c c
with
Lo = j " By(r){(ban/c)dr (6.5)
c
where rg7p and r¢ are the radii of the 670-discontinuity and the core-mantle boundary
respectively, the coefficients dcv,; are those given by V.3, and the differential kernels
B,(r) are given in (2.32).

In order to estimate P from (6.3), we need to make use of an upper mantle model
to calculate &, We explore two different strategies: (1) we take the S-velocity
model M84A [Woodhouse and Dziewonski, 1984] and assume dlnp/dlnf = 0.25
and dlne/dln 8 = 0.5; and (2) since the pattern of heterogeneity in the upper
mantle is not highly correlated with that in the lower mantle (see Dziewonski [1984]
and Woodhouse and Dziewonski {1984]) we simply set &; = 0 and consequently
incorporate upper mantle contributions into the error terms, 5. The comparison of
results using each of these strategies (see below) serves to quantify the influence of
upper mantle structure on the results.

If we‘ now assumne that €y are independent, normal random variables with same
variance, the statistical distribution of the parameter P in eq. (6.4) can be derived.
The details of this derivation are given in the Appendix 6A.

Two solid curves in Figure 6.3a show the distributions of P: the upper panel
represents the result by using M84A for the upper-mantle correction, and the lower
panel is for the case in which no upper-mantle correction is made. The least-squares
estimators P (see Appendix 6A) for the two case are 0.37 and 0.41, respectively.

6.1.2 Experiment 1b: Correction for o™? /a7

The distributions of P obtained in Experiment la could be biased due to the
potential overestimate or underestimate of V.3 with respect to the modal inversion.
This experiment is designed to give an estimate of the mutual overestimate or un-

derestimate. In Figure 6.4 we plot the differential kernels of modes 453, 554, 555,
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dina/dln S F dlna/ding

Fig. 6.3  Statistical distributions of esitimators of dIna/din 3 for the lower mantle. The results
in the upper panels are achieved with correction for the upper-mantle heterogeneity, while the
resuits in the lower panels are derived without upper-mantle corrections. The distributions are
constrained by the splitting functions of some mantle modes with two existing heterogeneous
mantle models ~ the thin solid curves represent the results by using model V.3 and the dashed
lines are for the results by using model SW. (a) Distributions of estimators of dine/dIn g are
derived from observed splitting functions and synthetic splitting functions from the existing lower-
riantle models. (4) Distributions of the estimator F are plotted, where F characterizes the
potential overestimate (F < 1) or underestimate of the existing model with respect to the effect
of modal results. {(c) The estimators of of dIna/dinf have been corrected for the biases due
to the potential overestimates, with respect to the effect of modal results, of the Earth models
used. The heavy solid curves are the joint distributions obtained by using V.3 and by using SW,
assuming the two results are independent.
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556 and ¢S10. In this experiment we do not use mode 4S54 since it is sensitive mostly
to the top part of the lower mantle where the resolution of V.3 is relatively poor
(A. M. Dziewonski, personal communication), however this mode is employed in
Experiment 2a, below. For the spherical harmonic degree s = 2, these modes are,
in the lower mantle, sensitive mainly to the heterogeneity in P-velocity, and their

sensitivities to the CMB undulation are very small. Therefore we may write
T§70
e = f A (P (Fbagfa)dr + 8y + ey s=2 (6.6)
TC

where coefficients §a,; are again taken from V.3, the factor F characterizes the
potential overestimate or underestimate of V.3 with respect to the modal inversion,
and &, are the coﬁtributions from the upper mantle. As previously for P,we make
use of (6.6) to find the probability distributions of F, which are presented by the two
solid curves in Figure 6.3b. Again the upper panel shows the result obtained using
MB84A for the upper-mantle correction and the lower panel is for the case in which
no upper-mantle correction is made. We may regard the distributions of P shown in
Figure 6.3a as conditional distributions with the condition F = 1. The unconditional
value of dln«/dln B, then, is given by P = PF. Using the distributions of P and
F previously found, we may calculate the distributions of P, the results are given

by the thin solid lines in Figure 6.3c.

6.1.3 Experiment 2a: Value of o™?/55W

The above analyses are based on comparisons of modal splitting coefficients with
those calculated using the P-velocity model V.3 of Morelli and Dziewonski [1987b]. A
paralle], but independent, analysis can be performed by comparing between observed
splitting functions with those predicted using the S-velocity model SW [ Woodhouse
and Dziewonski, 1986).

Writting dine/dIn 8 = P, and using S-velocity coefficients 8§83, from SW, we

have

cu= [ AN POBuIBYir + ta ke 5= (6.7)
rc
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for modes 453, 554, 555, 556 and ¢S50, using the same argument as was used in
Experiment 1b. The estimated probability distributions of P are shown by dashed

curves in Figure 6.3a.

6.1.4 Experiment 2b: Correction for M2 /35V

To estimate the potential overestimate or underestimate of SW with respect to
the modal data, we use the splitting function coeflicients of hybrid modes A, B, C,
D, E, and F (see Experiment la). The coefficients of spherical harmonic degree 4 of
modes A and F are omitted as in Experiment la. We write, for the selected splitting

coeficients:

ey = ] "B (r)(F6Bu/ B)dr + t + €ut (6.8)

where F characterizes the potential overestimate or underestimate of SW. The dis-
tribution of F derived from (6.8) are shown as dashed curves in Figure 6.30.

A “debiased” estimate of the ratio dln a/d1n 8 from the comparisons between SW
and splitting coeflicients is P = P/F, where P is that estimated in Experiment 2a.
The probability distributions of P are given by the dashed lines in Figure 6.3c.

6.1.5 Estimate of dlne/dIn in the lower mantle

Since the estimator P obtained in Experiment 1 and the estimator P obtained in
Experiment 2 may be regarded as independent!, the product of the distributions of
the two distributions gives the distribution of the joint estimate of the parameter
P = dina/dln B. The results are represented by the thick solid lines in Figure 6.3¢
(again the upper panel shows the result obtained using M84A for the upper-mantle

1Strictly speaking they are not completely independent since the error terms € in (6.3), {6.6),
(6.7), and (6.8) have common soutces — parts of them are from the errors in retrieved splitting
functions. However, these errors influence the distributions of P and P in opposite ways, so that
the relationship between P and €, is reversed from (6.3) to (6.7); the errors from other sources
(errors of V.3 and SW) are clearly independent. Therefore the independence of P and P may still

be assumed.
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Table 6.1: Confidence Intervals for Estimating P = dln a/dln 8

confidence level 99% 95% 90% 75%
MB84A used as correction A2<P <63 18<P<.B55 21<P< 51 2B5<P< .45
no upper-mantle corrections 19<P<.78 26<P < .69 30<P< .65 35<P< 59

correction and the lower panel is for the case in which no upper-mantle correction
is made).

Minimum length confidence intervals for P = dln a/dln B, derived from the dis-
tributions of Fig. 6.3, are given in Table 6.1. Again, results are given for the two
cases ~ with and without the upper mantle correction — and for confidence levels of
99%, 95%, 90% and 75%.

The distribution of P obtained using the upper mantle correction (upper panel in
Fig. 6.3c) is somewhat narrower than the case without such a correction, indicating
that the upper mantle model is helpful, overall, in explaining the modal observations.
Perhaps this is not surprising, since it is clearly more reasonable to assume that
upper mantle heterogeneity is that of M84A than to assume that the upper mantle is
homogeneous. For this reason we adopt the results with the upper mantle correction
in drawing our conclusion that, with 90% confidence, the ratio din a/dln B8 for the
lower mantle is between 0.21 and 0.51. The value of 0.8 of Anderson ef al, [1968]
based upon laboratory experiments is ruled out with 99% confidence.

It is interesting to reexpress the above result in terms of dln & Jdln p, where & is
bulk modulus and g is shear modulus. Through some straightforward algebra, we

obtain

dlnk P-F
dinpg ~ 1—E~R,(1-7P)

(6.9)

where E = £(8/a)? and R, =dlnp/dink. If we assume that Ry is a stable pa-
rameter and it takes value 0.229 of Anderson et al. {1968], we can calculate the
probability distribution of dlnx/dln g from that of P. F igure 6.5 gives the re-
sult using the P-distribution shown by the heavy solid cuve in the upper panel of

Figure 6.3¢c. The minimum-length interval of 90% confidence for dln k/dln p is, ac-
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Fig. 6.5 Statistic distribution of d! nx/ding. This distribuiion is
comerted from the distribution of dIna/dIn 3 shown by the heavy
solid curve in the upper panel of Figure 6.3c.
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cording to Figure 6.5, (~0.41, 0.26). On other grounds, however, it is physically
plausible to rule out negative values of dln x/dln . Correspondingly, dina/dln 8
is limited to the relative narrow interval (0.39, 0.51). Comparing with the result of
Anderson et al. (dlnk/dlny = 0.73), the result presented here indicates that the
elastic heterogeneity in the lower mantle is mostly from the perturbation in i, with

& being relatively homogeneous.

6.1.6 Implications of physical dispersion

The evidence presented here that the heterogeneity as seen by free oscillations
is of similar magnitude to that determined using other data sets corresponding to
waves of much shorter periods has interesting‘consequences for the possible lateral
variations in attenuation. It is not unreasonable to assume, under the hypothesis
that lateral heterogeneity is due to lateral variations in temperature, that there exists
proportionality between variations in seismic velocity and in attenuation parameters.

Let us suppose that
8¢a = ~v4 6lna 7 (6.10;

where 8¢, represents the heterogeneity in inverse quality factor (¢ga=(1-E)Q7'+
EQ;', with E = £(f/a)?). Then because of physical dispersion (e.g., Liu et al.
{1976]) éIn e is necessarily frequency dependent. Perturbing the approximate rela-
tion [Nowick and Berry, 1972]:

dlne 1

dnw ~ 7% (6.11)
where w is frequency, we find

ddlne 1 Yo

dlnw = pile=—7dla (6.12)

which may be regarded as a differential equation for the dependence of heterogeneity
(61n ) upon frequency. In order to solve this equation, we may, for example, assume

that v, is independent of frequency. In this case we obtain

(na)y, _ (ﬂ)—’"ﬁ"

(lna)., Wa

(6.13)
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or
InF
7" AR rTr——————————
ln(wg / 73] )

where F = (§lna),, /(§lna),,. If we assume that the measurement of aMP [T

§ga = — §lna (6.14)

performed in Subsection 6.1.2 gives an estimate on F, we may take wy ~ 2m/500s,
wy ~ 27 [1s, and F < 1.26, this last value being the upper limit of the minimum-
length 90% confidence interval for F (from the solid curve in the upper panel of
Figure 6.3b). Taking £+0.2% to be the typical level of heterogeneity in « (in spherical
harmonic degrees 2 and 4) these values give [6g.| < 2.34 x 10™*. A reasonable
alternative assumption to solve (6.12) is that the heterogeneity g, is independent
of frequency, since the average @ value of the Earth’s mantle depends weakly upon
frequency in the seismic frequency band [Knopoff, 1964; Anderson, 1967]. In this
case, we obtain 8¢, < 2.63 x 10~*. Naturally, a similar argument can be made
for B and gg. For the comparison of SW with the modal data (Subsection 6.1.2)
we may take w; ~ 21 /500s, wp ~ 27 /60s, F < 1.23, and {§1n B! ~ 0.4%, yielding
16ga| < (1;23 or 1.36) x 107% if vz or &gz is assumed to be independent of frequency.
Assuming that attenuation is entirely in shear {(Q;* =0), we have, approximately,
§Q51 =8gp=2.568q,, and thus the bound derived from the comparison of V.3 with
the modal data represents the more restrictive constraint, namely that heterogeneity
in Q7 (in degrees 2 and 4) is no more than 3:6.7 x 10™4, approximately 20% of the
spherically symmetric lower mantle Q7' (from PREM). This result depends upon
the assumption that there is no systematic underestimate in the inversion for the
V.3 model with respect to the modal results. With more accurate information on
the frequency dependence of heterogeneity, it will be possible to obtain more feliable
constraints on the magnitude of the heterogeneity in attenuation. It is interesting to
note that under the assumptions used here, the magnitude of heterogeneity should
decrease with frequency, and thus values of the parameter F, in Subsections 6.1.2
and 6.1.4, which are less than unity, while they are consistent with the data, are
rendered implausible.

Based upon our measurements of F, it is also possible to test whether physical

dispersion can reconcile the discrepancy between the values of dln a/d1n § obtained
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here and those inferred from laboratory experiments. In the literature (e.g., Liu
et al. [1976]; Kanamori and Anderson [1977]) band-limited constant Q models are

often used. For simplicity, we may approximate such models by

g Wy, < w < Wy
g{w) = (6.15)
0 elsewhere

where g is independent of frequency, and wy and wy are the low-frequency and
high-freqency cutoffs, respectively. Then in the seismic frequency band we have,

according to (6.12),

5@0 . 77(1 - "31'«:)

§lna —ln(t.ug/w}) (6.16)
Equation (6.12) also yields
1 w
61lna(w) — §lnafwy) = ~63,In — (6.17)
w wrr
where w iIs the typical frequency for free oscillations. Similarly
I w
$ln B(w) — 81ln Blwy) = ~8gs1n — (6.18)
w wrry

Extrapolating the laboratory value, 0.8, of dln a/d1n 8 [Anderson et al., 1968] to the
cutoff frequency wy, we obtain, by virtue of (6.16), (6.17), (6.18), and the relation

Jo = Egp,
v R 19
where A; and A, are given by
o= Mt - =
As = gwpmgg (6.21)

To evaluate (6.19) we require the value of the cutoff frequency wy, which is poorly
known. Sipkin and Jordan [1979] have reported that when w > 27 /10s, @ appears
to increase rapidly with frequency. If we take 27/1s as our cutoff frequency, wy, and

make use of the result F = 1.26, (6.19) leads to dln o/dIn f = 0.65 at w, = 27 /500s.
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Even with a very high value (2x/0.1s) of wy, an F larger than 1.69 is required
to explain dine/dinf < 0.5. Thus we conclude that other mechanisms, such as
those proposed by Anderson [1987} and Yeganeh-Haeri et al. [1989], are required to
reconcile the discrepancy between the dln a/dln B observed here and that obtained

from laboratory experiments.

6.2 Relationship between Heterogeneities in Den-

sity and in Velocities

Another important geophysical problem is that of the relationship between het-
erogeneity in density and in seismic velocities. The calculation of the geoid and
of plate motions using three dimensional mantle models [Richards and Hage, 1984;
Forte and Peltier, 1987] clearly requires positive values of the ratios dinp/dln o
and dlnp/dIn 3, consistent with a thermal origin for mantle heterogeneity, but con-
strain these parameters only weakly owing to tradeofis with viscosity structure and
to other uncertainties. Consequently, independent estimates of these ratios would
lead to :more accurate estimates of mantle viscosity. The study of the Earth’s free os-
-~ cillations provides the sole means of placing seismological constraints on the interior
distribution of density anomalies. Here, we demonstrate the possibility of estimating
the value of dIn p/dIn a and examine the power of resolution of the current data.

For each of the mantle modes, we may assume that the splitting coefficients are
- composed of three parts: (1) the contribution from upper-mantle structure; (2) the
contribution from lower-mantle heterogeneities in velocities (@ and 5); and (3) the

contribution from lower-mantle density. Assuming dlnp/dina =R, we may write
Cot = Gor + €0 + ] (PR (B /)dr + £x (6.22)

where Z,; denote the contributions from the upper mantle, which may be calculated
as above, and ¥ are the contributions from the lower mantle velocity structure. The
third term on the right side of (6.22) is the contribution from the heterogeneity in

density and ¢4 are error terms. ¢ and Sy in (6.22) may be evaluated by using the
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probability distribution

dlnp/dln«

Fig. 6.6 Statistic distributions of the estimator of dIn g/dIn a.
The distributions are constrained by the splitting functions of
some mantle modes and a P-velocity model V.3 of Morelli and
Dziewonski [1987h). The solid curve is the result by assuming

dIne/dIn B = 0.35, and the dashed line corresponds dlna/dIn 8 =
0.40.
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model V.3, together with multiplying factors determined in the preceding section,;
we take P = dlne/dIn f = 0.35 (the maximum likelihood value from the heavy
solid line in the upper panel of Fig. 6.3¢c). Equation (6.22) provides a constraint on
the parameter R = dIn p/dln e, which can be estimated by the method outlined in
the Appendix 6A. We have calculated the probability distribution of the estimator
of R, using 25 mantle modes: 053, 0S4, 055, 056, 057, 059, 153, 154, 155, 156, 157, 1%,
254, 255, 256, 258, 351, 358, 453, 454, 553, 554, 555, 556, and ¢510. The result is given
by the solid line in Fig. 6.6. In order to investigate the effect of the uncertainty in
in the value taken for P, we have repeated the experiment with the exception that
we use P = 0.40 (this value is reasonable upon our information, see Fig. 6.3¢). The
result is shown by the dashed line in Fig. 6.6.

Unfortunately, the constraint on the parameter R = dlnp/dIn a of the current
data set is not strong enough to provide a useful estimate. However, the possibility
of estimating this value from seismic data has been demonstrated, the result being
not contradictory to our previous information. The constraints on R should be

improved as more high quality, very long period seismic data become available.

6.3 Prediction of Splitting Functions from Exist-
ing Mantle Models

In order to calculate synthetic splitting functions, we may use some results ob-
tained from previous sections. We adopt 0.35 as the value for dine/dIn 8 in the
lower mantle (the upper panel of Figure 6.3c). And we assume that the model V.3
[ Morelli and Dziewonski, 1987b] needs to be multiplied by a factor 0.83 (Figure 6.3b,
upper panel) to become consistent with the modal data; the model SW { Woodhouse
and Dziewonski, 1986] needs a factor 1.02 (Figure 6.3b, upper panel). Since our
modal data accept a broad range of values for the ratio dln p/dln «, we simply take
the conventional value (0.5) [Anderson et al., 1968].

It should be noted that, because of its larger volume and of the general trend of

the modal sensitivities with depth, lower-mantle structure is of greatest importance
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in predicting the splitting functions. We have first compared the retrieved splitting
functions (Table 5.2) with synthetic ones by using the lower-mantle models only.
In Table 6.2 we list the correlation coefficients between the retrieved and predicted
splitting functions, together with the corresponding significance levels, which repre-
sent the probabilities that two kinds of splitting functions are not independent. We
also compare the sizes of these two kinds of splitting functions. The ratios of their
r.m.s. amplitudes are given in Table 6.2 also.

To check the importance of upper-mantle structure in predicting the splitting
functions, we also list in Table 6.2 the results for the case in which we have used
both the lower-mantle and the upper-mantle structures. We have constructed our
upper-mantle model as we did in Section 6.1 (see page 115).

First of all, the overall correlation coefficients for all modes together are very
high considering that there are 341 degrees of freedom. This indicates that we have
successfully retrieved reliable splitting functions for mantle modes in general. It may
also be observed that the introduction of upper-mantle structure does not improve
the correlation coefficients while it does increases the size of the synthetic splitting
functio;ls.

It is not surprising to observe that the best agreement is achieved for fundamental
modes (mode ,S; with n = 0). We believe that the following two reasons may
explain this: (1) these modes are very well excited by earthquakes, and their data,
therefore, have high signal-to-noise ratios; and (2) their differential kernels are less
oscillatory with depth and thus their splitting behavior is relatively insensitive to
the details of the existing models.

Although the overall agreement between predicted and observed splitting functions
is good, problems do exist for a few modes.

The splitting behaviors of modes ¢S5, 1Ss, and 35y are well predicted by the
spherical earth model PREM together with the rotation and the ellipticity of the
Earth (see Table 5.1). Their retrieved splitting functions are therefore very small
and comparable with the associated errors. The synthetic splitting functions of

these modes are also very small - smaller, on average, than those of other modes
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Table 6.2: Comparison of Predicted Splitting Functions with Retrieved Ones

V.3 alone V.3+M84A SW alone SW+M8B4A
Mode || c.c. sl r | ce sl r cc. sl r c.e. sl T
oS || 0.89 100 0.54 | 0.04 100 053 || 0.83 100 0.54 0.90 100  0.52
0S; || 0.88 100 0.60 | 0.94 100 0.59 || 0.81 100 0.60 0.8¢ 100 0.58
0Se 079 100 0.60 | 0.93 100 0.67 {| 0.71 100 0.66 0.92 100 067
oSs il 0.8 100  0.55 j 0.93 100 0.55 || 0.80 100 0.54 0.86 100 0.53
Ss Il 0.93 100 065092 100 0.66 i 0.87 100 0.65 0.87 100 0.66
Sy || 6.2 100 0.5 0.91 100 0.66 || 0.87 100 0.70 0.86 100 0.71
534 056 98 0.22]080 100 071084 99 0.22 0.85 100 0.69
,Se Il 0.73 100 020|085 100 1.13 | 0,19 52 0.20 0.79 100 1.08
155 0.82 100 0.78|0.81 100 0.83 | 0.79 100 0.88 0.79 100 0.92
0S4 |l 0.81 100 051078 100 0.55 || 0.70 100  0.50 0.73 100 ©.51
254 0.82 100 054077 100 0613 082 100 0.49 0.77 100 0.56
555 066 99 032|073 100 1.00| 063 99 = 032 874 100 098
sSio 1 0.57 98  0.40 | 069 100 1.32 064 99 0.35 0.72 99 1.26
.Sy || 0.61 99 0.28 | 0.70 100 164 1| 032 77 0.23 0.67 100 1.56 |
+Ss |lo062 69 032063 9% 108 0.74 100 0.39 0.70 100  1.11
155 074 100 0611063 99 081|070 100 0.74 0.67 100  0.87
154 076 100 1651057 98 3.01| 065 99 202 0.60 99 295
58 || 6.79 100  0.90 | 0.57 88 139 064 99 0.69 0.44 91 1.16
Sy (061 99 10.19;056 98 16.51 ] 0.24 63 11.40 0.36 83 15.77
453 045 92 0271045 92 084|051 96 0.29 0.50 95 0.81
593 064 99 088|046 93 215} 051 96 1.03 045 92 2.12
255 053 97 062]037 8 150027 69 0.63 0.27T 6% 145
aSy 014 924 061]014 24 054|020 33 043 0.19 32 043
484 0.1 52  1.1210.06 .17 209§ 001 3 1.09|-0.04 12 196
oSs 1017 47  1.60 ) 0.01 3 21110668 23 117{-010 29 1.53
Total || 0.73 100 058 { 0.67 100 0.97 || 0.65 100  0.59 0.65 100 0.93
The correlation coefficients between the predicted splitting functions and the those retrieved from
modal data are listed in the columns under title “c.c”. The corresponding significant levels (in unit

of percent) are given in the columns titled by “s].”. Parameter r represents the ratio of the r.m.s.
of the calculated splitting functions and that of the observed ones.
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by a factor of 2 for the aspherical components. It is obviously a very difficult and
perhaps meaningless task to match these small retrieved and synthetic splitting
functions. We should be satisfied, at this stage, as long as they are small.

Modes 455 and ;55 have been treated simultaneously with ;S and ;5s, respec-
tively, as “overlapping modes” when the splitting functions are retrieved. This means
that the number of unknowns is doubled in the inversion. Therefore‘they are more
poorly constrainted by the data, and thus the inversion results may be less reliable.

Since only 11 traces are available for mode 553 (see Table 5.1), the splitting func-
tion of this mode may be constrainted poorly by the data. The inconsistency of
the retrieved and predicted splitting function of this mode is probably due to the
unreliable results of the inversion.

Mode 45, is a very interesting mode in terms of its differential kernel. This mode is
sensitive mainly to the S-velocity perturbation in the very bottom part of the lower
mantle (see Figure 6.1). Its splitting function as retrieved from the seismic data is
completely different from those of most mantle modes, and is not well predicted by
the existing mantle models. If the retrieved splitting function is reliable, this mode
may reveal some new important features of the D" region which are not reflected by
the existing models. Unfortunately, it seems that this mode is among the poorest
constrained modes in our inversion (see diagonal elements of resolution matrixes in
Table 5.2). We will need more independent information to judge the disagreement

between the retrieved and predicted splitting functions.

Applendix 6A

Suppose we wish to estimate C, or ™1, from the equation:
y; = Cz; + g5, t=1,2,...,N (6.23)

where y; and z; are splitting function coefficients, derived from seismic spectra or
calculated from existing earth models; and ¢; are errors, assumed to be independent
random variables with the same (unknown) variance. The least-squares estimator ¢

[Kendall and Stuart, 1977a] of C is given by
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N N
C= Em;yifzx?. (6.24)

=] [

This estimator jtself is a random variable owing to the randomness of &;. Kendall

and Stuart [1977a) show that the statistic

o

=1

N 1-
r=(C-C) [02/ > :cf] (6.25)
has a Student’s t-distribution with N — 1 degrees of freedom if the distributions of

g; are normal, where

N
o? = 3 (i - G [(N = 1) (6.26)

i=1
is the estimator of the variance of €;. Equation (6.25) indicates that the fiducial

probability distribution [Kendall and Stuart, 1977b] of parameter C is given by:

N
dfe o [0?/ Zm?]"% i(r; N—1)dC  t(7; N-1)dC (6.27)
=1 )
or
1
dfy t{r; N — 1)C2da , (6.28)

where 1(7; N — 1) is the probability density of the t-distribution with argument 7
and N — 1 degrees of freedom, and 7 = 7(C) is given in eq. (6.25).
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Chapter 7

Inversion for Earth Models

7.1 Introduction

In Chapter 5 we have modeled the splitting of 34 multiplets in terms of their
splitting functions. These functions are linearly related to the aspherical structure
of the Earth’s interior through differential kernels, which can be calculated using
the formulation developed in Chapter 2. In this Chapter we shall study the earth
structure by using the information contained in the split seismic spectra. We employ
all the modes listed in Table 4.1 except mode 1052. As we pointed out in Chapter 5,
the differential kernels for mode 105, depend strongly on the reference model we
choose, due to possible coupling with 1,.5,. We omit it here in order to avoid special
treatment for this mode. We believe that the results and the conclusions of this
chapter would still hold if 105, were included, since its behavior is very similar to
other PKIKP modes.

Using ¢, coefficients listed in Table 5.2 as data, an inverse problem is defined by
(2.12) where 8h%,, dmy,;, and 8y, are treated as unkowns. The problem can be
solved by regular linear least-squares methods.

An alternative procedure is to find earth models to directly fit the original data
from which we have retrieved our splitting function coefficients. The inverse prob-
lem is in principle posed by (2.6), (2.8), and (2.12): retrieving the earth structure

§hd,, dmy,;, and émy, from data u(t). This is a nonlinear problem and we solve it
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iteratively.

The first procedure obviously has a great advantage. Having retrieving splitting
function coefficients, ¢y, accurately enough, the problem becomes very simple. The
model parameters of spherical harmonic degree s and order ¢ are controlled only by
the splitting function coefficients of the same degree and order, as indicated by (2.12).
Therefore the inverse problem is decoupled into a number of low-dimensional linear
problems. This enables us to do many experi‘ments to test the a priori constraints on
the models. As more high-quality digital seismic stations are deployed and as these
stations record more large events, we can continually retrieve new ¢y coefficients
for different modes and for higher degrees and improve those results which are not
well-constrained.

Although following the second method is a time-consuming procedure, we think
it is still valuable, at this stage, to solve the problem by directly fitting the orig-
inal seismic traces. When we invert for splitting functions mode by mode, there
is no guarantee that the resulting splitting function is the unique solution which
represents a property of the Earth. If the splitting-function solution is not the one
correqunding to reality, we are in danger of inferring erroneous earth models or of
not being able to find any satisfactory model. By following the second procedure, we
should overcome the possible inconsistency of the inferred splitting functions, since
they are constrained by the requirement that they all be consistent with a single
carth model. Models developed by such a one-step method are also expected to be
statistically better constrained.

The inversion for the aspherical structure of the Earth is strictly a continuous
inverse problefn; as such, a complete solution is impossible. Using a finite collection
of data, we are limited to solutions of finite resolution which are smoothed or filtered
versions of reality. We begin by choosing a set of parameters which, we believe, can

best describe the structure of the Earth which causes modal splitting.
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7.2 Modeling Parameters

The splitting of normal modes depends, simultaneously, on the three-dimensional
distributions of P-velocity, S-velocity, density, boundary undulations, and anisotropy
of the whole Earth. To invert for all these parameters we would require a much larger
data set than is now available. However the current data set can be used, together
with certain assumptions and other information, to retrieve some of the major char-
acteristics of the three-dimensional structure of the Earth. Some of the assumptions
and information are based upon physical considerations, e.g., the fluid outer core
is assumed to be laterally homogeneous [Stevenson, 1987]; some are a priori ones,
for example we shall impose the requirement that heterogeneities in P-velocity and
in S-velocity are proportional to one another; and some are experimental or even
subjective assumptions - for example, we truncate the Legendre polynomial expan-
sion in radius at a certain degree. With the assistance of these assumptions and
information, we seek to construct earth models which are relatively simple, i.e., in-
volving only a small number of modeling parameters. Of course, the model must be

sufficient to adequately explain the data,

7.2.1 Parameterizing heterogeneity in the mantle

Since the multiplets used in this study have very long periods (the shortest period
1s 193 s for mode 1353), they are sensitive only to the very large scale features of earth
structure. The distinction between the Earth’s crust and the mantle, therefore, can
be neglected. We simply treat the whole volume from the surface of the Earth (the
sea floor in the PREM model) to the core-mantle boundary, as the mantle.

Although there is no definite evidence that lateral heterogeneity is continuous
across the 670-discontinuity, we model the heterogeneity continuously, owing to the
resolution of the data. Introducing a discontinuity in heterogeneity and parame-
terizing the upper mantle and the lower mantle separately is quite straightforward.
However we would not expect this to allow us to retrieve more information, because

the trade-off between the heterogeneities just above and just below the boundary is
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severe for the current data set. Therefore we choose to avoid this complication and
to model the whole mantle continuously.

We impose the constraint that the relative aspherical perturbations in « (F-
velocity), B (S-velocity), and p (density) in the mantle be proportional to one an-
other. It has been shown above (see Table 6.1) that the value of dlno/dln B is, with
high probability (90 percent confidence), located within the interval of (0.21,0.51)
based upon the modal data. If we assume that the perturbations in the bulk mod-
ulus and in the shear modulus are positively correlated, the interval can be more
tightly constrained to (0.39, 0.51). We shall adopt a value of 0.5 for this ratio here.
This value is ab the conservative end of the interval, with respect to the experimen-
tal value, 0.8, of Anderson et al. [1968]. Although we have not shown this value
(0.5) to be valid for the upper mantle, it is reasonable to use this value for the
mantle as a whole for the following reasons: (1) some evidence has been reported
that din «/dln B for the upper mantle also takes low values, possibly due to partial
melting [Hales and Doyle, 1967]; and (2) the value which is appropriate for the lower
mantle should approximate the value for the whole mantle, since the upper mantle
is much less important than the lower mantle for the splitting of most modes used in
this study. For the value of dln p/dIn o the current modal data allow a large range
of variation (see Figure 6.6); we simply take the value (0.5) of Anderson et al. [1968]
for the mantle. Now we can introduce a variable ((r, 8, ) to describe the aspherical

heterogeneities in the mantle

P _6Q(T?97¢)2 6ﬁ(7‘§8$¢)_ 610(7‘:979‘5)
od="uy =" 5 )

where the denominators are evaluated in the spherical reference model.

(7.1)

The parameter ((r, 0, ¢) may be expanded in terms of spherical harmonics for the
dependences of colatitude § and longitude ¢, and in terms of normalized Legendre

polynomials for the radial r dependence:

K] s
C(T,g,(}S) = Z Z Cst(r)Yj(G,q&)

5=2 tmey
8 eVen

s K

g
= 3, 2 2 Cal@)Yi(0,6) | (7.2)

w2 Imees kw0
8 ¢yen
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where S and K are the numbers at which the expansions are truncated, the coeffi-
cients ¥ are unknowns to be determined by inversion, fx(z) are Legendre polyno-
mials as used in Dziewonski [1984], Y}!(8, 4) are spherical harmonics as defined by
Edmonds [1960], and z is the reduced, normalized radius running from —1 at the
core-mantle boundary to +1 at the surface of the Earth (the sea floor).

It is not appropriate to assume a relation of the form (7.1) for the spherical
part of the perturbation, and therefore for degree s =0 we determine independent

perturbations in P-velocity, S-velocity, and density, writing:

S0 _ SN s 2) (7.3)

@ k=0 _'

o _ $ g0 si(e) - (7.4

=

5”" Z p® fi(z) (7.5)
k=0

where dag, 60, and 6po are the spherical perturbations from the reference model

and a(k), B, and p®) are unknown constants.

7.2.2 Boundary undulations

T'he modes used in this study are very sensitive to aspherical structure at the very
top part of the mantle, including the undulations of the discontinuities. In Figures
6.1, 6.4, and 7.1, are shown the sensitivities of several modes to perturbations in
the radius of the surface (the sea floor for the PREM model), together with the
sensitivities to other features of the Earth. The strong sensitivities to the surface
topography are evident. The sensitivities to the other main discontinuity near the
surface, the Moho, are not shown, but they are comparable in magnitude with those
to the.sea floor. Since the wavelengths of the modes used in this study are much
longer than the distance between these two discontinuities, it would gi‘;’é misleading
results if any or both of these discontinuitieé were inverted for from the modal
data. Trade-offs between the volumetric perturbation at the top of the.mantle and

the undulations of these two boundaries are also expected. Therefore we elect to
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ignore perturbations of these discontinuities, and correspondingly their effects may
contaminate the results of the inversion for volumetric heterogeneity at the top part
of the mantle. Ritzwoller et al. [1988] modeled mantle structure only of spherical
harmonic degree s = 2 by using modal data. They also found that the splitting data
for mantle modes (most of the modes they used coincide with the ones used in this
study) are not sufficient to infer uppermost mantle structure unambiguously, even
with the assistance of the constraints provided by the frequency measurements for
many fundamental surface wave equivalent modes of Smith et al. [1987).

The 670-discontinuity and the inner-core boundary are also not included in the
inversibns, owing to the poor constraints which the data set provide for these pa-
rameters. The low sensitivities to the 670-discontinuity are clear in Figures 6.1, 6.4
and 7.1, and only a small number of “core modes” are sensitive to the inner-core
boundary (see Figure 7.1).

The topography of the core-mantle boundary (CMB) is included in the inversion.
Although we do not expect to obtain unequivocal results for CMB topography,
because of the low resolution of the current data, we show that some characteristics
of the CMB are revealed by this experiment. A number of modes used in this study
are sensitive to the perturbation of the CMB and some have very strong sensitivities;
for example, see the kernels for modes ¢S54, 055, and ¢S in Figure 6.1 and modes

35, and 253 in Figure 7.1.

7.2.3 Anisotropy in the inner core

As we have mentioned in Chapter 1, it is necessary to introduce inner-core anisotropy
to properly explain the behavior of the anomalously split core modes. Since we do
not have sufficient data (only 8 core modes are used here) to derive a unique model
even for lower degrees, the result achieved by solving this underdetermined inverse
problem should be regarded only as an example of a model which fits the data. The
model we obtain may, however, reflect some realistic features, such as the magnitude
of inner-core anisotropy.

In the discussion here we shall omit mentioning anisotropy of degree zero; such
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Fig. 7.1  Differential kernels for spherical harmonic degrees 2 and 4 of some core modes. The
sensitivities of these mode penetrate deeply into the core. See caption to Figure 6.1 for details,
with exceptions that the sensitivities to the undulation of the inner-core boundary of some modes
presented here are visible now.
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anisotropy corresponds to transverse isotropy about the radial vector which does
not contribute to splitting, but acts only to shift the central frequency of the mode.
Although there are components of degree zero in the anisotropic models to be pre-
sented, the corresponding parameters will trade off with all other spherically sym-
metric perturbations and thus are not well determined. Since the splitting functions
of the anomalously split core modes are dominated by coefficients c§0 and cqo (see

Table 5.2), we invert for the cylindrically symimetric part (i.e., spherical harmonic
e ——

order ¢ = 0) of anisotropy only. As a result of Subsection 2.3.3, we need 24 inde-
pendent parameters (11 for s = 2, and 13 for s = 4) to describe such an anisotropic
tensor field A, which is subject to the symmetry property (2.52), on the surface of
a sphere. Generally speaking, these parameters are functions of radius r. Assuming
that inner-core anisotropy varies smoothly with r and only terms associated with 70,
r!, and r? remain in the expansion for the radial dependence, the total number of
independent parameters which are needed to determine A would appear to number

72. However the requirement that the elastic tensor be nonsingular at the center of

the Earth can help to reduce this number. It has been shown in Section 2.5 that a
general .analytic elastic tensor field may be expressed in terms of the basis tensors
") given in (2.202). For the considered form of inner-core anisotropy A, our in-
terest is limited to s=2,4, =0, and v =n+2¢ < 2. From Table 2.6, which gives the
allowed triplets (k,7n,q), the number of degree of freedom for such a tensor field A
is found to be 17, rather than 72. Furthermore the basis tensors 71-0 with n odd,
which correspond to the terms with odd powers of r, do not contribute to splitting
(see Subsection 2.5.3). Thus only 14 independent parameters remain. In addition
to the above constraints, we may also assume that there are no lateral variations

in the chemical properties and in the thermal condition in the inner core, and that

the zonal structure is purely due to the axi-symmetric spatial distribution of the

crystal orientations. It may be demonstrated that such pure anisotropy (no lateral
variations in Lamé coefficients) requires that the coefficients of Tii%) and 75322%) van-
ish. This working hypothesis is by no means required by the data. However since it

represents a physically simpler model and is consistent with the current modal data
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Table 7.1: (k,n, g) for the Inner-Core
Anisotropy Model

p=1 p=2 p.—-_~3 p=4 p=5h p=8 p=7T
s=01] 4,00 500 401 501 220 320
s=21200 300 201 301 120 220 3240
s=41100 1,01 120 220 320

(as we show below), we shall make this assumption. And thus only 12 parameters
are needed to describe the anisotropic inner-core model. If anisotropy of degree zero

is included in the inversion, 6 more parameters are introduced. Specifically, we write

6 7 5 .
— C(r)(z gbép})\gp) + Z ¢ép)Agp} + Z ¢£P}Agp}) (7.6)

p=1 p=1 p=1
where C{r) = «(r) + $u(r) is evaluated in the reference model (r is normalized
such that r=1 at the inner-core boundary), ngf’} are dimensionless coefficients to be
determined, and AP = 7" with (k,n, ¢) being those listed in Table 7.1. The basis

tensors A} may also be expressed in terms of their spherical components /\EJ,‘:?

Agp) =3 /\,(Jiz)e,ejekel ' (7.7)

ikl
where 1, j, k, [ take values 1,2,3 and e; = 6,e, = ¢,es = T are the unit vectors in
the spherical-coordinate directions. Since we are seeking a cylindrically symmetric
tensor field A with its symmetry axis coinciding with the Earth’s rotation axis, the

components ,\Sji? are independent of longitude ¢. Their » and 6 dependence is given

by

3 spN
) = 2 AN (1) PN cos 6) (1.8)
N:O

where ASJL’, ) are given in Table 7.2, and PNC are generalized Legendre functions
[Phinney and Burridge, 1973]. In order to evaluate (7.8), we tabulate some expres-
sions for PN? in Table 7.3.

With the expansion of the inner-core anisotropy in the form of (7.6), the cylindri-

cally symmetric parts of the splitting functions can be modeled by
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Table 7.3: Some generalized Legendre functions
PNY(z) with ¢ = 0

5=0 Sz 2 s=4
N=0] 1 1822 ~1) $(352% — 3022 + 3)
N=1 Lao(l-22)3  B(72% - 3z)(1 - 22)}
N=2 (] - 22) @(722 - 1)1 - z?)
N=3 %?;g:c(l - 22)3
N=4 . (1 — 27)?
6
coo = Y Ul (7.9)
p=1
), (0) '
o= 3 Uy (7.10)
p=l
> )
co =3 UPyle (7.11)
p=1

where the kernel coefficients W) are obtainable from (2.51)

1
v9 = oL [ () Y oglaterrar (7.12)
: 0

2w afpryé

afByé
kngs

are defined in (2.45), and (k,n, ¢}, for a given (s,p), are those listed in Table 7.1.

" where ry is the radius of the inner-core boundary, are given in (2.203), go&

7.2.4 Attenuation structure in the mantle

As we restricted the inversion only to the spherically symmetric components of the
imaginary part of splitting function (see Chapter 5), we invert only for the spherically
symmetric perturbation in the attenuation structure of the Farth. Although it is
straightforward to include lateral variations in attenuation, it would lead to only
insignificant additional variance reduétion, as pointed out in Chapter 5.

In modeling, an assumption will be made that the imaginary part of shear modulus
departs from the reference model (PREM) by 67(r) while the imaginary part of bulk

modulus is fixed as in the reference model. Thus we have
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wo Im{cgo) = _/1: g&%—)p(r)Mg(r)rzdr (7.13)

where wp is the real part of reference frequency of the multiplet, u(r) is the shear
modulus evaluated in the reference model, Mo(r) is the differential kernel given by
equation (102) of Woodhouse and Dahlen, and rs and r¢ are the radii of the sea
floor and the core-mantle boundary respectively. As for {(r) in (7.2) we expand:
LSS ' (1)
where K is the number at which the expansion is truncated, g*) are the constants

to be found, and fi(z) are those defined when they are introduced 1n (7.2).

7.3 Models to Fit Splitting Functions

Using the splitting function coefficients listed in Table 5.2 as data, we have inverted
for earth models by linear least-squares methods. Here we present two aspherical
earth models which are retrieved from the aspherical part (s = 2 and s = 4) of the
splitting function coefficients listed in Table 5.2. The first is a heterogeneous model
of the mantle and the second is an anisotropic model of the inner core.

We have not attempted to develop spherical earth models to fit the splitiing
function coefficients of degree 0 (A3 and Im(AY) in Table 5.2). Our reference spherical
model (PREM of Dziewonski and Anderson [1981]) is based on a much larger data
set than the one used in this study. Therefore it is expected that any significant
spherical correction to PREM required by the splitting of modes probably have
higher-degree components in radial dependence, which are not well constrained by
our data set. To derive a more precise spherical earth model would require a much

larger set of data than that involved in this study.

7.3.1 Aspherical model of the mantle

For the current experiment we use the cy coeficients of the following 25 mantle

modes as the vector d (see (3.1)): 05z, 0S4s 055, 056, 057, 059, 153, 154 155, 196,
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157, 158, 254, 255, 256, 258, 351, 358, 453, 454, 553, 554, 555, 55, and 510, truncate
the expansion of {,/(r) at K = 6 in (7.2) to model the volumetric perturbation in
the mantle. We invert for the topography of the CMB simultaneously. Thus the
elements of vector x in (3.1) are ¢, ¢}, ..., (&, and 6k, (the relative perturbation
in the radius of the CMB) ~ 8 unknowns for each s and .

In order to approximate the assumption that the elements in the vector e (as
defined in (3.1)) are independent samples from a normal distribution (see Chapter
3), we should divide each splitting function coefﬁcie;nts, Csty by its associated error
when it is used as an element of vector d in (3.1). Naturally one would consider
using the error estimates listed in Table 5.2 to evaluate the error e; however, we find
that the error estimates for modes which have very small splitting effect (e.g., 153)
are usually unrealistically small, compared with those of the other modes, due to
the damping used in the inversion for the splitting functions. This bias in the error
estimates of the splitting functions forces us to select another option: we simply
assumne that all splitting function coefficients have the same standard errors and we
let them enter into vector d with the same weight.

Now we turn our attention to the specification of the elements, o?, of the model
covariance matrix C; (see (3.6)). The orthonormality of Legendre polynomials en-

5, k=0,1,...,6. Since we can

ables us put 0; = o, for all 1 corresponding to
incorporate any common factor multiplying the elements o; into the parameter ¢
(see (3.6)), the remaining problem in evaluating o; is to choose the ratio of the ele-
ment o, corresponding to §hy, to the other diagonal elements o, correspo.ﬁding to
& (k=10,1,...,6). To seek a priori information on this issue, we have compared
the size of a lower-mantle P velocity model (V.3 of Morelli and Dziewonski [1987b])
and the size of a CMB topography model [Morelli and Dziewonski, 1987a). (The
comparison has been made only for harmonic degree s = 2 and s = 4). The result
corresponds to rms(¢%)/rms(6h,) = 0.5 for our case (actually we are interested only
in the order of magnitude of this value, if the inverse problem is a stable one). This
suggests that we set o¢/gy = 0.5 to specify the strengths of desire for the telative

smallness of volumetric and boundary perturbations.
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The damping parameter ¢ determines the general strength of our desire for the
smallness of the model relative to the fit to the data. It is a trade-off parameter and
is chosen so that the variance in data is reduced close to its minimum while the size
of the model is kept reasonably small. This needs a subjective judgement.

The model we obtain is named SAF (splitting data, aspherical model, from split-
ting functions) and it is tabulated in Table 7.4. Along with the coefficients of
the model, we also list in Table 7.4 the estimates of the associated standard errors
and the corresponding diagonal elements of the resolution matrix. The standard
errors are derived from the covariance matrix of the model sampling distribution
(see Chapter 3). The obvious tendency is that the resolution becomes poorer for
coefficients of higher degree in the radial expansion. This is expected, and implies
that although we could introduce higher degrees than k = 6 in the inversion, they
would not be well resolved by the data. Therefore the truncation of the expansion
of Ce(r) in (7.2) is justified.

In Table 7.5 the misfit to each mode of this model is listed. The total variance
reduction is as high as 77%. However the r.m.s of the residuals in the data is larger
by a factor of 3.3 than that of the error estimates listed in Table 5.2. If we believe
that ﬁhese error estimates are underestimated by a factor of V2 due to the effect
of windowing used in the data processing (J. Park, personal communication, 1987},
the residuals are still above the error level by a factor 2.3. One might argue that
model SAF does not fit the splitting functions. But we rather explain it as the
underestimation of the errors associated with the splitting functions, due to the
damping in the inversions and due to the violation of some assumptions which are

made in retrieving the splitting functions.

7.3.2 Modeling inner-core anisotropy

The splitting functions of anomalously split modes cannot be explained by mantle
structure alone. Taking czo and cgo of 8 core modes (whose differential kernels are
shown in Figure 7.1) as data, the variance reduction by model SAF is only 29%.

Here we shall attempt to model the residual splitting functions of these modes by
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Table 7.4: Model SAF

kE*AS kAl kBl EAZ Ep2 RAQ ksl kgl kA2 kp? k43 kB3 kg% kpd
156 -67 66 -172 -250 -4 10 0 36 18 -32 54 .19 58

0 15 1 15 15 15 19 19 19 19 19 19 19 19 19
92 92 92 92 92 91 91 91 81 91 91 91 91 .91
-157 -89 -13 197 -T2 47 43 49 .57 85 -44 42 .1 62

1 28 28 28 28 28 33 33 33 33 33 33 33 33 33
H58 58 58 58 58 66 66 .66 .66 .66 .66 .66 .66 .66

59 -14 53 110 -36 -2 73 86 -53 37 27 22 57 14

2 28 28 28 28 28 34 84 34 34 34 34 34 34 34
54 54 b4 54 54 BT 5T 57 57T 57 BT 57 57 57

48 -85 .29 -106 -58 27 29 52 20 .67 -54 10 20 48

3 28 28 28 28 28 38 38 38 38 38 38 38 38 38
B34 34 34 34 34 45 45 45 45 45 45 45 45 45
34 -8 .50 3 8 -3 -15 7 47 -39 51 22 49 -18

4 22 22 22 22 22 30 3 30 30 30 30 30 30 30
25 .25 25 25 25 20 29 29 .20 29 .29 .29 .20 .29

7 -9 4 -19 59 15 41 23 21 .18 -26 6 28 -4

5 21 21 21 21 21 927 2T 27 2T 97 27T 21 97 97
A5 .15 15 15 .15 15 16 .15 .15 .15 15 .15 .15 .15

13 -14 7 2 -12 33 25 2 25 -16 -9 28 3 20

6 17 17 17 1T 17T 24 24 24 24 24 24 24 24 %4
08 08 08 08 .08 11 a1 .11 .11 .11 a1 11 L11o.m
<101 116 40 84 319 -24 3B 5 -8 44 82 -1 .80 -71

¢ 54 54 54 54 b4 0 70 O 70 70 7O 70 70 70
67 67 67 67 67 54 54 B4 54 54 B4 B4 54 .54

Parameter ((r,0,¢) in (7.2) is expressed (see the legend to Table 5.2) as ((r,0,¢) =
o ot sopmo(F AL costd + * Bl sintd) fr(z)p!(8); and the relative perturbation in CMB radius
bh is expressed in same convention 6h = 37 37 (Al cost + *B!sintg)pt(8); where fi(z) are
Legendre polynomials (cf., (7.3))}, p}(6) are spherical harmonics. The complex coefficients ¢¥, in
(7.2) can be derived from * A} and * B! as (¥, = (=1)"(2r)3(* At —i*BY), for t > 0; ¢k, = (4r)3k AL,
for t = 0; and ¢% = (2m)¥ (A 4 # BI') for ¢ < 0. The coefficients kAl and *B! are given in the
first entry for each degree k in unit of 10~%, An estimate of the associated error for the coefficients
At and ¥ B! is derived from the covariance matrix, and is given in the second entry (in the same
unit}. The third entry for each degree k gives the corresponding diagonal elements of the resolution
matrix.
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Table 7.5: Misfit of Model SAF
to Each Mode

Mode x? Misfit* | Mode x® Misfit"
053 0.20 157 0.15
054 (.19 25 0.67
055 0.10 158 0.16
153 0.26 453 (.16
a9 (.09 255 0.28
0S5 0.17 555 0.09
154 0.19 453 0.35
aS7 0.12 554 0.43
155 £.16 555 0.17
254 0.47 aSy 0.18
25 0.38 555 0.09
156 0.16 510 .19
059 0.43 average (.23

The misfit is defined by x2 = [0, (e —
¢F)?/N;] where N; is the number of coeffi-
cients used in inversion of mode j, ¢; are the
observed splitting function coefficients, ¢! are
the predicated splitting function coeflicients
from Model SAF, and 0% = 1 | ¢2/N, with
N=3%" P N;.
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inner-core anisotropy which is assumed to take the form of (7.6). Namely, we solve
(3.1}, where f is now a linear function, for the unknown vector x which contains
{d)&”,p =1,2,...,7} for s = 2 and {{",p = 1,2,...,5} for s = 4. Again, as we
did during inverting for model SAF, we let splitting function coefficients enter into
vector d with the same weight. Since the parameter set {1} is associated with a
set of orthonormal basis tensors, all the elements of the a priori model covariance
matrix C, are set to ¢~L.

For a given damping level, ¢, we may solve the least-squares problem and check
the size of the resulting model and the fit to the data. We also calculate the synthetic
PKIKP travel times from the resulting anisotropic model. In Figure 7.2 we plot the
predicted travel times of the rays which vertically penetrate the inner core, along
with the associated error estimates, against the value of log1/s.

For s =2, the model can essentially predict the travel times reported by Morelli
et al. [1986] and by Shearer et al. [1988] for values of logl/c greater than 6.9.
For s = 4 the observed travel times place stricter requirements on the value of ¢
(or equivalently on the size of the model), and require log1/¢ be between 7.4 and
8.3. Therefore the travel-time data can be easily explained if the model has an
appropriate size, say, corresponding to log1/¢ equal to 7.4. Meanwhile the model
corresponding to this damping level can aggregately fit the data of the core modes
very well - 79% variance reduction can be achieved by the inner-core anisotropy and
model SAF together.

When we examine the fit of the resulting model to each individual mode, however,
a serious problem appears. While the splitting function coefficients 20 of these
core modes can be consistently explained by the model, this model is not able to
explain ¢4 of mode ;35;. The reason for this becomes clear if we examine the
kernel coefficients ¥ (see (7.11)) of this mode and mode 35, (the sensitivity of
the latter mode to the inner-core anisotropy is so strong that the main character
of the model is determined by this mode alone to fairly large extent). For mode
1352, we have U = (12.7,-15.2, —2.0, ~1.4,8.5) x 10~%, and for mode 35,, U{) =
(11.9,-11.6,0.0,0.6,3.0) x 10~*; they are almost parallel to each other. Clearly it
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Fig. 7.2 Spherical harmonic expansion coefficients of degree s = 2 and 4 and order { = 0ol The

travel-time anomalies of antipodal PKIKP rays. Two horizontal lines are the results extimated
by Morelli et al. [1986} (dashed line) and by Shearer et al. [1988] {dashed-dotted T from
ISC data. The dotted curve is the prediction from the inner-core apisotropy model which i
inferred from the splitting functions of anomalously split core modes. The prediction i plotied
s a function of the damping parameter ¢, which is used in the damped least-square inversion for
inner-core anisotropy. The two solid curves above and below the prediction curve indicate the
standard error estimates of the prediction.



is very difficult to find a reasonable model ¢£p ) which simultaneously explains the
splitting function coefficients c4o of modes 135, and 35;, which are equal to 1.2 x 10-%
and —2.4 x 107°, respectively.

The inconsistency of the splitting functions of these two modes could be inter-
preted in two ways. First, the inner-core anisotropy of the real Earth could more
complicated than the form we assume here. The second possibility is that the split-
ting function coefficients of modes 135:, 352, or both, which are retrieved by using
the nonlinear least-squares method, are not the true solution corresponding to the
Earth. Anticipating some results presented below, we find that the split spectra of
mode 35; can, indeed, be explained by a totally different splitting function from the

one tabulated in Table 5.2. This will be further discussed below.

7.4 Models to Fit Split Spectra Directly

For this inverse problem, our basic equation (the first of (3.1)) has the following
meanings. The vector x describes the earth structure, d is the collection of observed
seisnograms contributed from isolated multiplets, e is the error associated with the
data d, and the function f is nonlinear and defined by (2.6), (2.8) and (2.12).

In order to solve this problem, we evaluate the matrix of partial derivatives (3.5),

using the chain rule for differentiation,

A= [%%—)] apY {322()?3() ac;‘;(x)]x_x

Ef

(7.15)

where c¢() represents the splitting function coeficients of mode 7, and the summation
is over all the modes used. In Chapter 2, we have given an efficient recipe to calculate
Of /0ct) (see (2.18) through (2.27)). 8cli)/dx is radily calculated for a particular
choice of the model space since, as shown in Chapter 2, the relationship between c{?)
and x is linear and thus 8c¥)/8x is model independent.

Again we need to discuss the conditions under which e in (3.1) can be treated
approximately as samples from white noise so that the data covariance matrix C.

in (3.2) becomes proportional to identity matrix. In order to achieve this condition,

152




we should in principle divide each row of the both sides of the basic equation by the
expected size of the associated error of the data point. Generally speaking errors in
data have two sources: (1) observational noise (the noise level varies from spectrum
to spectrum); (2) unmodeled effects (e.g., the contributions from higher degrees of
the spherical harmonic expansion and the coupling effects between adjacent modes,
etc.). The latter could be incorporated into the vector e and be regarded as “theo-
retical errors”.

In Chapter 4 we have proposed the use of the seismogram before the earthquake as
the means for estimating the noise level for a given seismic trace. Dividing each trace
by the estimated noise level, an arbitrary component of the error vector € in (3.1) can
be written as e +eit, where e?® are observational errors which have been normalized
and have unit variance, and e!* are the “theoretical errors”. Assuming the variance
of et* is A?, we only need divide each row of both sides of the equation by m to
make the error e white. Since we do not know the precise properties of “theoretical
errors”, we are forced to make assumptions. We shall assume that A% are the same,
all equal to A3, for all traces ¢ belonging to the mode 7 and that they are proportional
to the mean of the squared data amplitude (3 &;2 /N;), where the summation is over
all data points ¢ for the mode, d; are the data normalized by the estimated noise
level, and N; is the number of the data points of the mode j. It is further assumed
that in the limit where the “theoretical errors” are dominant (A} > 1), all modes
(regardless of their data dimension N;) have the same importance in controlling
the model. (This implies that the “theoretical errors” for a given mode are not
independent). The idea can be formulated by assigning a multiplicative factor IV; to
A%, which will be used to divide the both sides of the equation, to down-weight the
modes having larger N;. Combining the two factors, we have A} = A2 T d?, where
A2 is a constant universal to all modes and the summation is over all data points z
for the mode. A? is a number related to the ratio of the variance of the “theoretical
errors” and the variance of the observational errors. Due to the lack of information
on these errors, we choose the number experientially. The number is chosen so that

the data size of a mode (measured by D? = ¥ d?, where summation is over all data
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points 2 of the mode and d; are the data which have been fully weighted) varies by
a factor 5 from its minimum to maximum. For the relative data size of each mode,
see Table 7.6.

Now let us describe what the model vector x, introduced in (3.1), contains. Of
course the heterogeneity parameters (% defined by (7.2) should be given the first
consideration. As above, we truncate the spherical harmonic expansion at s = 4
and the radial expansion at k =6. For the spherical correction to mantle structure
we use the parameters of®), 8 and p® . introduced in (7.3), (7.4), and (7.5).
We truncate the corresponding radial expansion at k= 3 The topography of the
CMB, represented by the spherical harmonic components of relative perturbation
in the radius of the CMB (bhy, s = 0,2,4), are retrieved simultaneously. The
anomalously split modes are modeled by inner-core anisotropy — we include, in the
vector X, the parameters PP (s = 0,2,4), introduced in (7.6). Finally parameters
B® (k=0,1,...,6) (see (7.14)) are also included in the vector x to incorporate a
spherical perturbation in mantle attenuation structure. The total dimension of the
vector x is 150.

Having chosen the model space, we are now able to consider the specification of
the model covariance matrix C., which has been introduced in Chapter 3. Since
the parameter sets {¢}} in (7.2), {6k} (spherical harmonic expansion coefficients
of the relative perturbation in the radius of the CMB), and {¢{")} (see (7.6)) are
associated with orthonormal bases, we may set all o; corresponding to {¢%} be o,
set all o; corresponding to {8k} be oy, and set all o corresponding to {1} be 0.
In evaluating the covariance matrix C, for the linear inversion (see Subsection 7.3.1),
we aescribe a strategy for choosing the value of o /oy, which we also employ in the
present case. In modeling the splitting functions of core modes, we were unable
to find an inner-core model of the form (7.6), which could fit all modes. However
the experiments that have been performed enable us gain some knowledge on the
intensity of inner-core anisotropy. Relying upon this kind of knowledge and the r.m.s.

value of {C%} of model SAF, we may choose a value of o¢/oy for the current problem,

which gives o¢ /oy, = 0.01. Although the parameters for spherical perturbations, ¥},
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Table 7.6: Misfit to Each Mode of
Model SAT and Splitting Functions

Mode D? Var Var’
0Ss 1.21 0.20 0.17
05y 0.74 0.40 0.32
0S5 0.83 0.26 0.21

153 —3 51 0.96 0.36 0.30
096 1.26 0.18 0.14
352 0.91 0.38 0.32
154 1.03 0.36 0.33

057 ~2 S3 1.63 0.25 0.13
155 —2 53 1.25 0.49 0.34
285 —1 Sg 1.21 0.84 0.73

659 1.65 0.38 0.21
187 1.00 0.41 (.28
256 0.56 0.58 0.45
158 1.07 0.46 0.31
483 —2 5g 1.22 0.68 0.45
553 0.33 (.49 (.38
454 0.42 £.68 0.54
554 1.01 0.64 0.40
595 1.13 0.44 (.35
653 —3 Sz 0.85 (.59 0.35
35 1.14 0.48 0.26
053 (.82 0.70 0.44
6910 0.71 0.67 0.57
1154 0.97 0.68 0.40
1397 1.12 0.36 0.30
1155 1.02 (.81 0.55
1353 0.95 0.46 0.37

average 100 047  0.34

Squared data D? for each mode have been
calculated from the weighted data (see text
for details) and have been normalized so
that their average is unity. Variance ratios
(squared misfit/squared data) are listed for
model SAT (Var), see Table 7.7a-c; and for
splitting function coefficients (Var'), see Ta-
ble 5.2. The average of Var and Var' is
weighted average with D? as the weight.
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B¥), p%) and g} (see (7.3), (7.4), (7.5), and (7.14), respectively) have been included
in the model vector x, the main interest of this study is in the aspherical structure of
the Farth. For this reason we allow the parameters for the spherical perturbations
move to wherever the data prefer, within the limits required by the stability of
the inversion. Namely we set elements g; corresponding to the parameters for the
spherical perturbations to very large values relative to the other elements of C,.

In our inversion we also use the results derived from antipodal PKIKP travel-
time data [Morelli et al., 1986] as constraints on the inner-core anisotropy 1) (see
(7.6)). We use the spherical harmonic coefficients of the travel-time anomalies as
the constraints g in (3.1). The reported travel-time residuals have a cylindrically
symmetric distribution with the symmetry axis coinciding with the Earth’s rotation
axis. Thus they provide 2 (for s=2,4 and ¢ =0) constraints on the model parameters
%bgp).

The result of the inversion is called SAT (splitting data, aspherical, from seismic
traces), and it is tabulated in Tables 7.7a-7.7c. The coefficients for the heterogeneity
parameter ((r,8, ¢), see (7.2), and the CMB topography éh are listed in Table 7.7a.
Table 7.7b tabulates the parameters, P{P), for the inner-core anisotropy, see (7.6).
In Table 7.7¢ we list the coefficients for the spherical perturbations in P velocity
(@), § velocity (8), density (p), and the imaginary part of the shear modulus in the
mantle.

In Tables 7.7a-7.7c the associated standard errors of all of the model parameters
and the corresponding diagonal elements of the resolution matrix are given. For the
derivation and the reliability of these quantities, see Chapter 3. One may immedi-
ately see that these error estimates are far too small. We ascribe the underestimate
mainly to the damping of the model. The general deviation of the diagonal elements
of the resolution matrix from unity (see Table 7.7a-7.7¢) indicates that the model
is heavily damped. In such a case, the formal error analysis described above is very
likely to lose meaning.

The misfit of this model for each mode is listed in Table 7.6. The misfit of a mode
is defined by Var = ¥ (d; — dF’)? /32, where dF are the predicted values by SAT, and
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Table 7.7b: Model SAT, Part 2: Inner-Core Anisotropy
R S S S S S

21 -29 09 -25 07 0.7
s=0 0.2 01 6.1 0.2 0.2 0.2
0.86 079 0.80 076 070 050
-34 =17 18 43 01 —-41 06
5= 2 0.1 01 01 02 02 0.2 0.2
0.75 084 0.55 084 023 062 032
61 -37 060 ~03 12
s=4 0.1 0.1 0.2 00 02
0.61 063 047 076 0.61

Parameters % {see {7.6)) are listed in the first entry for
each spherical harmonic degree s in units of 10~2. The
estimates of standard errors are derived from the covariance
matrix, and are given in the second entry for each s (in
the same units). The third entry gives the corresponding
diagonal elements of the resolution matrix. See Chapter 3
for details on the computation and the reliability of the
error estimates.
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Table 7.7c: Model SAT, Part 3: Spherical Mantle Perturbations

in a, B, p, and Imaginary Part of Shear Modulus

E=0 k=1 k=2 k=8 k=4 k=b k=6
—62 198 —403 —433
otF) 17 28 23 26
082 059 039 0.30
—415 356 749 25
B+ 20 29 28 23
078 053 056 0.23
217 844 545 —5B5
o5 17 30 20 22
0.10 041 022 024 _
132 417 268 368 —166 170 —447
k) 25 61 68 69 67 66 54
096 073 063 047 046 035 0.18

Use (7.3), (7.4), (7.5), and (7.14) to calculate the spherical per-
turbations in e, 8, p, and the imaginary part of shear modulus,
respectively. The coefficients are listed in the first entry for each
parameter, ofF), glk) p(k), and f*), in unit of 107°. The asso-
ciated standard errors estimated from the covariance matrix are
listed in the second entry for each parameter in the same units.
In the third entry are listed the corresponding diagonal elements
of the resolution matrix. See Chapter 3 for details on the compu-
tation and the reliability of the error estimates.
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d is the r.m.s. of the data d; of the mode. We also list in Table 7.6 the misfits
corresponding to the splitting functions tabulated in Table 5.2 using the same data.
These misfits could be regarded as the minimum values which earth models could

achieve.

7.5 Discussion

7.5.1 Heterogeneity in the mantle

In Figures 7.3-7.9, four different mantle models are shown at depths of 300, 500,
700, 1200, 1700, 2200, and 2700 km: (a) mode] SAT, modal model retrieved directly
from seismic traces; (b) model SAF, modal model retrieved from splitting functions;
(c) model SW, based on waveform studies on SH body waves |Woodhouse and
Dziewonski, 1986]; and (d) model M84A (for the upper mantle) [Woodhouse and
Dziewonski, 1984] or model V.3 (for the lower mantle) [Morelli and Dziewonski,
1987b]. To be comparable with the other models, P-velocity model V.3 has be
multiplied by a factor 2 when it is presented in Figures 7.5d-7.94.

F irst% of all, great similarities between models SAT and SAF are evident at all
depths. This verifies that the inversion results for the splitting functions of the
mantle modes, as given in Chapter 5, are mutually consistent. This consistency
provides evidence (which we believe is more compelling than the formal error esti-
mates) that the splitting functions have been successfully retrieved and that they
do, indeed, reflect the Earth’s three-dimensional structure.

Upper-mantle heterogeneity, as revealed by waveform studies [Woodhouse and
Dziewonski, 1984; 1986], varies with depth relatively rapidly. For example, both
models SW and M84A exhibit a dramatic change in the depth range 300 km to
500 km (Figures 7.3 and 7.4). Naturally the splitting of low-frequency normal modes
are sensitive to larger-scale structures. Thus it may not be appropriate to expect that
the modal models, retrieved from the current data set, could recover the rapid radial

variation in the upper mantle. We should be satisfied if the models can represent
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the very-large-scale features of the upper mantle. Our resulting models, SAF and
SAT, are, indeed, correlated with the models based on the waveform studies. The
correlation coefficients between, for example, the modal model SAF and the SH
waveform model SW is above 0.5 (corresponding to 95% significance level) for most
of the upper mantle, except in the region near depth of 500 km where the correlation
coefficient is still positive. The strong similarity in pattern between SAT and SW at
300 km depth (Figures 7.3a and ¢) further confirms that the modal models do bear
important signals from the upper mantle. We have pointed out in Chapter 6 that
our data are sensitive mostly to the lower-mantle structure. This is also verified by
the inversion results. While the damping level we used makes the modal models too
small for the upper mantle, as compared with waveform models, the results for the
lower mantle are in agreement with our knowledge based other existing models, e.g.,
model SW and travel-time model V.3 of Morelli and Dziewonski [1987b].

The agreement in the lower mantle among modal models SAT and SAF, SH-
waveform model SW, and P travel-time model V.3 is remarkable. At the depth
interval between 2000 km to 2700 km, the agreement is almost perfect: correlation
coefficients are around 0.9 ~ corresponding to 100% significant level. The excellent
agreerﬂent extends up to the depth of 1300 km between the modal models and the
waveform model. The travel-time model V.3 is highly consistent in pattern with
the other models between depths of 1000 km and 2000 km, but it has a very small
amplitude from the depth of 1600 km to 1900 km, relative to the other models
{cf., Figure 7.7). The discrepancy of these models at the top of the lower mantle
(for example, see Figure 7.5) may be largely attributed to the following facts. The
aliasing from the strong heterégeneity in the upper mantle is expected for all models,
especia,llly the modal models (e.g., comparing Figures 7.3a — 7.5a). The horizontal
resolutioﬁ of the travel-time model V.3 may also be poor in this region (A. M.

Dziewonski, personal communication).

7.5.2 ‘Core-mantle boundary

In Figure 7.10 we plot four topography models for the core-mantle boundary:
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(a) the modal model SAT, and (b) the modal model SAF; for comparison the CMB
model X222 of Morelli and Dziewonski [1987a] is also plotted in Figure 7.10: (c) the
filtered version of X222 with only even degrees and (d) the original model with both
even and odd degrees. Model X222 is inferred from PcP and PKPgc travel times.
This model has very large odd-degree components, which can be observed from
Figure 7.10. Since the data distribution of travel times is uneven (see Figures 3 and
5 of Morelli and Dziewonski [1987a}), it is possible that aliasing between even- and
odd-degrees terms may occur. Therefore it is a safer -strategy. to compare the modal
models with the unfiltered travel-time model, which has to be done region by region
instead of term by term in harmonic expansion. Some similarities between the modal
models and the unfiltered X222 model in Figure 7.10 are evident, especially if we
ignore the Africa~Indian-Ocean-Australia region, where the travel-time sampling is
relatively poor (see Figures 3 and 5 of Morelli and Dziewonski [1987a]). The modal
models are smaller than the travel time model by a factor of the order of 2. This
could be attributed to the trade-off between the CMB structure and the lower-mantle
perturbation for the modal models.

It is an encouraging result that the patterns of the CMB-topography models from
the modal data are consistent with geodynamic predictions [Richards and Hager,
1984; Hager et al., 1985; Horte and Peltier, 1989]. Undér the Pacific ocean, for
example, the arising of the CMB is associated with slow velocities (corresponding
to hot material) in the lower mantle {compare Figure 7.10a with Figures 7.7a~ 7.9q,
for instance).

Although the trade-off between the CMB undulation and the lower-mantle struc-
~ture (including the value of the ratio of the relative per.turbations in P-velocity and
in S-velocity) prevent us from making a stronger statement in favor of our result,
the results presented here demonstrate the ability that the splitting of normal modes

can provide independent constraints on the problem.

7.5.3 Spherical corrections in the mantle

Our main interest in this study is focused on the aspherical structure of the Earth.
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In order to investigate the contamination to our results due to the potential spher-
ical deviation from the reference starting model, however, we have simultaneously
included spherical corrections (for velocities, density, and attenuation) in our inver-
sion. The correction results are list in Table 7.7c. The sizes of these corrections
are very small, though no damping is applied on these parameters (as a strategy
we have not damped the spherical-correction parameters so that they can absorb
the data residuals as much as possible). This indicates that our reference model
(PREM of Dziewonski and Anderson [1981]) is a very precise spherical model for
this study. Although the corrections obtained here may contain some information
on the Earth’s spherical structure, we expect that a much larger data set is needed

to make reliable spherical corrections to PREM.

7.5.4 Core modes and inner-core anisotropy

Since the inversion for the inner-core anisotropy is an underconstrained inverse
problem, we do not expect to find the unique solution from our data set (8 core
modes only). Instead, we seek to demonstrate that inner-core anisotropy can provide
an explanation for the behavior of the anomalously split core modes, which have
not been successfully modeled using other hypotheses. Here we shall address two
questions: (1) how well does model SAT, which includes the inner-core anisotropy,
fit the data for core modes? and (2) can the model predict the PKIKP travel-time
anomalies?

In attempting to explain the zonal part of splitting function of the core modes,
we were unable to derive a relatively simple model of inner-core anisotropy to fit
the splitting function coefficients listed in Table 5.2 (see Subsection 7.3.2). The
anisotropic inner-core model of SAT, however, is required to optimally fit the original
seismic trace from which the splitting functions have been retrieved. If is interesting,
therefore, to see to what extent the predicted zonal parts of the splitting functions
of the core modes agree with those retrieved for individual mode. In Table 7.8 the
predicted coo and cyo of 8 core modes are tabulated together with those retrieved

from the spiit. spectra.
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Table 7.8: Comparison of Predicted and
Retrieved cog and c4p of Core Modes

€0 €40
Mode pred. retr. pred. retr.
35, 206 52 99 38
1352 39 34 14 19
653 40 39 7 14
253 40 54 4 6
1353 32 31 0 0
993 25 5 ~5 =12
1154 24 25 1 5
1155 15 25 0 4

Splitting function coeflicients cyp and ¢y
predicted from model SAT are listed in
the columns. titled “pred.”; and those re-
trieved from the seismograms are listed in the
columns titled “retr.”. Allare in units of 16—

We can see immediately that the predicted c¢yp and cyg of mode 353 by model SAT
do not agree with those retrieved from the seismograms at all. However model SAT
does explain fairly well the original split spectra from which the splitting function
has been derived — as indicated by ratio Var/Var’, where Var and Var’ are listed in
Table 7.6. The ratio for mode 35; is 1.19, better than the average value for all the
modes together. Therefore we are convinced that there is more than one splitting
functions, possibly a sequence of them, which can explain the spectral splitting
of mode 35, essentially equally well for the current data. The predicted splitting
function by model SAT is favored over the one listed in Table 5.2, owing to its
consistency with splitting functions of other modes.

The retrieved ¢y and cqg of the other core modes can be explained very well by
the anisotropic inner-core model — an overall 90% variance reduction is achieved if
mode 3.5, is excluded. Therefore we may conclude that the anisotropic inner-core
model, part of model SAT, is a model which can explain the anomalous splitting of
core modes.

Now let us turn our attention to the predicted PKIKP travel times of model SAT.
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In Table 7.9 we compare the anisotropic inner-core model with the models of Morelli
et al. [1986] and Shearer et al. [1988], which are based upon PKIKP travel-time
studies. Although these models represents very different anisotropic fields, they
predict practically same antipodal PKIKP travel times. In an attempt to reduce
the discrepancy between the results derived from travel-time anomalies and those
derived from modal splitting, Morelli et al. [1986] introduced a radial dependence
proportional to r? in the inner-core anisotropic parameters. This model is still not
" successful in modeling modal results and, furthermore, Shearer et al. [1988] point
out that this model predicts overly large travel-time anomalies for rays which turn at
shallow depths in the inner core. In Figures 5, 6, and 7 of Shearer €t al. [1988], they
show the average travel-time anomalies, observed and predicted by some models, as
a function of the depth of the turning point and of the ray angle from the Earth’s
rotation axis. Such averages are sensitive to inner-core anisotropy. In order to
make a comparison with these results, we plot the predictions of the model SAT
in Figure 7.11. Clearly the problem of overly large travel-time anomalies, shown in
Figure 6 of Shearer et al. [1988], is overcome by the model SAT.

In summary, the inner-core anisotropy of model SAT successfully expﬁains the
splitting of anomalously split modes, and simultaneously predicts PKIKP travel-

time anomalies fairly well.
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Table 7.9: Comparison of Inner-Core Anisotropic Models

gbﬂ” ¢§2) gbf,s) ¢§‘” ¢§5J g{;ﬁﬁ) ¢£?) travel-time coefficients ¢,
SAT | 21 -29 09 25 07 07
s=0| MDW | 117 0.51 — 387950 + 39498 + 3334
STO | .17
SAT | -34 -17 18 43 0.1 -41 06 29341 — 20845
s=2 | MDW | -4.95 -2.16 11398 — 178¢8%
STO |-2.58
SAT | 01 -37 00 -03 1.2 — 138450 + 141407
s=4| MDW | 751 3.28 ' +.08008 + 1784V
STO | 3.52

In order to compare our inner-core anisotropic model with the models of Morelli et al. [1986] (MDW)
and of Shearer et al. [1988] (STO), we here express these two models in terms of the parameters
1&&"“) (see (7.6)), in units of 10~2. The antipodal PKIKP travel-time residuals, 8¢, can be calculated
from &6t = T(toY{ + t2YP + t4Y{), where T is the travel time predicted by the spherical reference
model (PREM of Dziewonski and Anderson {1981]), and Y, = Y/(0, ¢) are completely normalized
spherical harmonics as defined by Edmonds [1960] with 8 and ¢ being the polar coordinates of the
point where the ray intersects with the inner-core boundary.
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Fig. 7.11  Predictions from model SAT of the averaged PKIKP travel-
time anomalies, as a function of the turning point of the ray, which is
characterized by its depth and colatitude (left panels) or the ray angle
from the rotation axis {right panels). This figure should be compared with
Figures 5 and 6 in Shearer et al. [1988], which show too large predicted
anomalies by a particular model of inner-core anisotropy of [Morelli et al.,
1986). For the observed anomalies see Figures 3, 6 and 7 in Shearer et al
[1988]. Scaling is the same as in Shearer et al. [1988]: 3 s is equivalent
to 100 km in the upper panels and 1 s is equivalent to 6 km in the lower
panels.
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Chapter 8

Conclusions

We have derived large-scale, three-dimensional Earth models from the information
contained in split spectra of free oscillations. The results are essentially consistent
with existing heterogeneous Earth models, based upon independent data and tech-
niques, indicating that heterogeneity in the seismic velocities is, at most, weakly
dependent on frequency. This consistency is very encouraging and demonstrates the
ability' to obtain models of Earth structure spanning three orders of magnitude in
frequency.

A very important concept used in this study is the splitting functions of normal
modes. The splitting functions fully describe the splitting properties of the modes
and provide linear constraints on three-dimensional Earth models which are essen-
tially model independent. It has been shown that we may invert for these splitting
functions, as an intermediate step in retrieving the structure of the Earth, mode by
mode, from very long period seismic data. With the current data, approximately 30
trace for each mode, we are able to retrieve the low-degree terms (sphérical harmonic
degrees s = 2 and 4) in the splitting functions of isolated, low-frequency multiplets.
The reliability of these splitting functions has been examined by comparison with
the predictions of existing models, and by retrieving the Earth structure from these
functions; we have found that most splitting functions retrieved can be consistently
explained by relatively simple three-dimensional models of the mantle, together with

a zonally anisotropic inner core. Modeling has revealed that the split spectra of a
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few multiplets (35; is the most serious case) can be fit by very different splitting
functions. This nonuniqueness should be overcome, we believe, when more data are
available.

In addition to confirming existing models of mantle heterogeneity, our results
present two new major features of the Earth’s interior. The ratio of relative aspher-
ical perturbations in P-velocity and in S-velocity is (with 90% confidence) smaller
than 0.5 for the mantle, much lower than the value (0.8) conventionally used, which
is based on the laboratory experiments [Anderson et al., 1968]. In order to ex-
plain the anomalous splitting behavior of the core modes, we are forced to introduce
anisotropy in the inner core. We have developed a formulation to expand a general
analytic tensor fleld in the inner core and have shown that out of 21 independent
components of an elastic tensor field only 13 independent comnbinations of them are
responsible for the splitting of the normal modes. Using these theoretical constraints,
we have developed a relatively simple model of inner-core anisotropy, which can ex-
plain both the anomalous splitting of the core modes and the PKIKP travel-time
data.

The technique presented in this study provides a very encouraging prospect for the
study of normal modes. It is straightforward to generalize the technique to include
the coupling of different multiplets, This will make it possible to employ much
more data and to study the splitting and the coupling of many new modes. The
new networks currently under development [Romanowicz et al., 1984; Nolet et al.,
1985; Smith, 1986; Romanowicz and Dziewonski, 1986] will make it possible to study
splitting function coefficients of higher degrees and will provide better-constrained
results. Some very important geophysical problems which cannot be solved today,
such as that of constraining the lateral heterogeneity in density of the mantle, will

eventually have reliable solutions.
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